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ABSTRACT 
 
The finite element method of analysis is one of the several well-developed numerical 
techniques that can provide useful information for engineering surface and underground 
excavations in rock. Its application to design in civil and mining engineering projects is 
essentially an analysis of displacements that leads to estimates of changes in stresses and 
strains induced during excavation process. There is a great generality in terms of handling 
the problems having a complex geometry involving layered, non homogeneous rock 
masses and possible supporting structures interacting with them. Most of the studies 
carried out so far are, which can be simulated as a 2 D plane strain problem, essentially 
for assessing the stability of tunnels. However, for an accurate and robust prediction of 
the structural behaviour of the cavern/ large underground opening, a complete three 
dimensional finite element analysis is required. Though the efforts required in mesh 
generation for heterogeneous domain for a 3 D analysis are enormous, nevertheless it 
enables the designer to solve the problems posed by EGO (Extraordinary Geological 
Occurrences), which are very common in the geologically complex Himalaya.  
 
The paper deals with the development of a software package for 3-dimensional analysis 
of stresses in anisotropic rock masses named as ASARM. The software is capable of 
taking into account in-situ stresses, anisotropy (inherent and induced) and stress 
dependent modulus. Three typical problems have been analysed to validate the software. 
 

Keywords: Finite element method, numerical techniques, underground excavations, 
stability, heterogeneous, stresses, strains 
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1. INTRODUCTION 
 
A number of hydroelectric projects are in design and construction stage in India for 
utilising untapped hydro energy. The construction of large caverns for powerhouses, 
particularly in complex geological conditions, is a new challenge. The behaviour of the 
caverns in massive competent rock, although complicated, has already been studied using 
theories of elasticity, plasticity and rheology. The behaviour is further complicated by the 
complex geological conditions such as, presence of joints and shear zones. Under similar 
complex geological conditions powerhouse caverns of Sardar Sarovar Multipurpose 
Project, Tehri Hydro Development Project and Nathpa Jhakri Power Project are under 
construction in India.  
 
Limitations of the physical - geomechanical models of hydroelectric projects motivated 
the research workers in the early 70s to develop empirical models based on field 
observations and case histories. Later, with the realization of limitations of the empirical 
models and advent of personal computers, research efforts were directed towards several 
numerical techniques, e.g,. the finite element method (FEM), the boundary element 
method (BEM) and the distinct element method (DEM). Out of these, FEM has emerged 
as the most popular technique among civil engineers due to its generality and ability to 
model rock mass discontinuities and the associated anisotropy. 
 
Review of the literature suggests that the analysis and design of caverns is generally based 
upon 2-D linear elastic finite element analysis. The general approach, is to assume 
reduced modulus of deformation and perform analysis considering the rock mass as 
isotropic if  the joint sets are three plus or random or both and there is no major shear 
zone. However, it is a gross simplification if the presence of one joint set with or without 
a major shear zone is ignored and the rock anisotropy is not considered in the analysis. An 
accurate and realistic prediction of the structural behaviour of cavern requires three 
dimensional finite element analysis to consider the effect of complex geological features 
such as shear zones and major discontinuities and intrusions. 
 
In the present study, a software package, for 3-D non-linear elastic analysis of stresses in 
anisotropic rock masses (ASARM) has been developed using finite element method with 
the capabilities to simulate in-situ stresses and geological discontinuities like shear zones, 
fault zones and anisotropy associated with jointed rock masses. The nonlinear elastic 
analysis is justified when the caverns are located in the non-squeezing rock mass.  
 
In order to simulate the major discontinuities in a cavern, like shear zones, a generalised  
three-dimensional joint / interface element has been incorporated in the software to model 
interface of jointed rock mass and shear zone taking into consideration the dilatancy, 
roughness and undulating surface of a discontinuity. 
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The constitutive equations, proposed by Samadhiya (1998), to account for the complex 
anisotropy of the rock mass according to its micro-structural nature have been 
incorporated in the program. The compliance matrix of the rock mass is assumed as equal 
to the sum of compliance matrices of the isotropic rock material and all the joint sets.  
 
2. FINITE ELEMENT FORMULATION 
 
In the finite element method, the domain of interest is first subdivided into a number of 
discrete sub-domains or elements. Over an individual finite element, the behaviour, in the 
present case the deformations in the continuum, is approximated from the nodal values 
using the pre-established shape functions defined within a given element. Once the 
behaviour of the domain has been represented in terms of the discrete nodal values, 
technique like the weighted residual method, virtual work statement or variational 
methods (Bathe, 1982; and Zienkiewicz & Taylor, 1992) form the basis for the finite 
element formulation. The outcome is a discretized equilibrium expression which, is turn, 
when combined with the constitutive equation, results in a set of equations which are, 
finally, solved for the unknowns like displacements from which strains and stresses can 
be computed. 

2.1 Element Geometry 

In the present study, the hexahedral continuum element has been employed for the finite 
element discretization. As is well known in finite element literature, the discretization 
would enable the element geometry in terms of (x, y, z) co-ordinates of a point to be 
written as 
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where n is the number of nodal points in an element (20 in the present case for rock mass 
element and 16 for joint element). 

Ni is the standard iso-parametric shape function, mapping a bi-unit cube in (ξ, η, ζ) space 
to a general hexahedron in (x , y, z) space, which for corner nodes can be defined as 

 ( )( )( )Ni i i i= + + +
1
8

1 1 1ξξ ηη ζζ  (2a) 

and for mid side nodes along ξ = 0 plane as 
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 Ni = 
1
4

 (1 - ξ2) (1 + ηηi) (1 + ζζi) (2b) 

along η = 0 plane as  

 Ni = 
1
4

 (1 - η2 ) (1 + ξξi) (1 + ζζi) (2c)  

and along ζ = 0 plane as  

 Ni = 
1
4

 (1 - ζ2 ) (1 + ξξi) (1 + ηηi) (2d)  

where ξ η ζi i i, ,  are the co-ordinates of the ith  node of the bi-unit cube. 
 

2.2 Element Kinematics 
 
The basic kinematic variable occurring in the present formulation is displacement defined 
through its components u, v, w (grouped in vector {u}) in the direction of the reference 
system axes (x , y, z). Like geometry, the displacement variation within the element may 
be uniquely related to nodal displacements, { }δe , through the shape function matrix [Ni ] 
as  

 { } [ ] { }u Ni e= ( , , )ξ η ζ δ  (3) 

where {u} = {u, v, w}T  (3a) 

 { }δ e = {u1 , v1 , w1 ,..., un , vn , wn }T  (3b) 

 [N] = [N1 I, N2 I, N3 I,…,Nn I]  (3c) 

n = number of nodes in the element  

and [I]
�
�
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�

�

=
100
010

001

         (3d) 

The strain components are obtained as derivatives of the displacement variable as, 

 {ε} = [L] {u} (4)  

where, {ε} = {εx , εy , εz , γxy , γyz , γzx }T (4b) 

and L is the linear differential operator for small strains which is defined as 
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Combining Eqs. 3 and 4 enables the discretized strain - displacement relation to be 
expressed as, 

 {ε} = [L] [N] {δe} = [B] {δe}  (5)  

where,  
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 (5b)  

 
2.3    Constitutive Relation 
 
The elastic stress-strain relation for a three-dimensional continuum may be expressed in 
the usual matrix form 
 
 {σ} = [D] {ε} + {σo}  (6)  

where, [D], the elasticity matrix for anisotropic rock masses, 
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Fig. 1 -   Rotation of axes 

{ε}  =  Strain 

{σo} = Insitu stresses. 
 
2.3.1 Constitutive law for jointed rock mass 
 
Figure 1 shows axes system for resolution of stresses along a joint plane. The stress {σ} 
are resolved to X’, Y’, Z’ axes system i.e. {σ’} which then are further resolved to X”, Y”, 
Z” system {σ”}  in order to get stresses perpendicular to joint plane and in joint plane in 

orthogonal directions (Fig. 2). The corresponding transformation matrices [ ]'
jD  and [ ]"

jD  

comprise of respective direction cosines. Finally, stresses on the joint plane are obtained 
as 
  

 {σ”}    =    [D"
j ] [D

'
j ] {σ}       (7) 

 
Samadhiya (1998) has proposed elastic constitute equations based on an equivalent 
material approach. It aims to capture the overall behaviour of the rock mass based on the 
constitute characteristics of intact rock and rock joints including their spacing and 
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orientation. The elasticity matrix of the jointed rock mass has been derived from the 
compliance matrix which in turn is obtained by integrating the compliances of the rock 
material and that of all the joint sets. The compliance matrices are transformed into global 
system before being summed up. The total strain in the rock mass is the sum of strains 
contributed by various joint sets. 
 
The overall strain matrix (compliance matrix) of the jointed rock mass is given as  

 

Fig. 2 - Stresses on joint plane 

[ ] [ ] [ ] [ ][ ][ ]'
j

"
jj

T"
j

n

1j
r D D H D   H      H

j

�
=

+=       (8) 

where 
[Hr] = compliance matrix of the rock material 
[Hj] = compliance matrix of the joint set 
[ ]'

jD  = first transformation matrix for resolving stresses from global X, Y, Z axes 

to 
   X’, Y’ and Z’. 
[ ]"

jD  = second transformation matrix for resolving stresses from global X’, Y’, Z’ 

   axes to X”, Y” and Z”. 
nj = number of joint sets 
 
Following parameters are required for a complete description of the constitutive 
relationship of material: 
 
i)  Er (elastic modulus) and νr (Poisson’s ratio) of the rock material, 
ii)  Number of joint sets, their orientation (dip and dip direction) and joint frequency,. 
iii)  Normal stiffness (kn ) and shear stiffness (ks ) measured parallel to the joint surface 

for each joint set. 
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The above parameters would enable obtaining the elements of compliance matrices of a 
jointed rock mass. The inverse of the compliance matrix would give the [D] matrix. 
 
2.3.2 Constitutive law for joint element/interface 
 
Goodman et al. (1968) provided the explicit element stiffness matrix, for use in a finite 
element analysis of a four noded rectangular joint element having zero thickness by 
minimising the energy equation with respect to the nodal displacements. 
 
A generalised formulation of a three dimensional joint/interface element has been derived 
by Samadhiya (1998) to account for dilatancy, roughness and undulating surface of 
discontinuities. Figure 3 shows an isolated element alongwith its node numbers. Figure 4 
represents the middle surface of the joint element at ζ = 0 plane. The nodes coincide with 
the corresponding nodes on the top and bottom planes. 
 
The strain { }ε  at any point in the joint element may be defined by the local tangential and 
normal relative displacement with respect to the plane of discontinuity. The interface 
stresses are then determined by multiplying the strain with the stress-strain matrix [D]. A 
detailed derivation of the rotation matrix [R] is given in the Ph.D. thesis of Samadhiya 
(1998).  
 
2.4 Equilibrium 
 
It is well known in finite element literature that the principle of virtual work provides a 
basis for the derivation of equilibrium statement. In the present context, it may be 
expressed as the balance between the virtual work due to external forces {F} and the 
internal virtual work due to stresses {σ} integrated over the current volume. For a given 
element, the virtual work equation may be written as 
 

 { } { } { } { } 0=δ−σε� e
T*

eee
T*

e FdV                                                                  (9) 

where, {ε*}and {δ*} are the virtual strain and displacement fields respectively. 
 
On substitution of the strain - displacement relation in the above equation and noting that 
the expression must hold good for any arbitrary set of virtual displacements, the 
descretized equilibrium equation becomes: 
 

 [ ] { } { }
Ve

T
e e eB dV F� − =σ 0                                                        (10)  
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The above integral is evaluated through the Gauss-Legendre quadrature rule. The integral 
is made equivalent to the summation of integrand evaluated at Gauss integration points 
within the element multiplied by the corresponding weights. 

 

 

Fig. 3 - Joint/interface element sandwiched between two parent brick elements 
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Fig.  4 - Isolated joint/interface element with nodal numbers and local axes 
 
Now, taking into account the stress-strain law, and the compatibility equation, the 
equilibrium equation for an element is obtained as, 
 
 [Ke ] {δe} = [Fe ]                                                                                            (11)  
 
where the stiffness matrix [Ke ] is given as, 
 

 [ ] [ ] [ ] [ ]K B D B dVe
V

T

e
e

= �                                                                      (12)  

 
The load vector includes the external loads applied to the system, e.g., concentrated loads, 
pressure and gravity loading. In addition, this load vector also requires an evaluation of 
the nodal forces due to stress release caused by the removal (or excavation) of a portion of 
the domain. 
 
The nodal forces equivalent to the boundary tractions i.e. pressure loading {p} and the 
gravity loading {b} (body forces) may also be calculated by applying the principle of 
virtual work. These are given as the following equations: 
 

 { } [ ] { }F N b dVb
V

T

e
e

= �                                            (13)  
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and { } [ ] { }F N p dAp
T

A
e

e

= �                                                                    (14)  

where, {b} and {p} are the body forces and pressure loading respectively. [N]T and Ae are 
shape functions and area of the surface on which external tractions are applied. 
 
Invariably, in-situ stresses within the rock continuum play a key role in the analysis, 
especially when stress dependent modulus is used. The in-situ stresses have been 
accounted for by applying them as initial stresses. However, in the excavated portion, no 
in-situ stresses are present, and therefore, the effect of the same need to be accounted for. 
In-fact, to obtain the displacements occurred due to release of in-situ stresses and further 
the resulting redistribution of stresses is the aim of entire analysis. 
 
For that, load vector due to in-situ stresses in each element is calculated first, as 
 

 { } [ ] { }F B dVeo
T

V
= � σ0                                                                      (15) 

 
where, 
 { } { } { }T

yx
T

0z0y0x0 z, zK, zK,, γγγ=σσσ=σ                                           (16) 

 
in which Kx and Ky are the in-situ stress coefficients, γ is the density of rock mass and z is 
the depth of Gauss point below ground surface. 
 
It may be mentioned that actual in-situ stress (initial stress field) has been considered 
which is a better representation of the in-situ condition in comparison to K0- condition. 
The shear components of the in-situ stress field have not been accounted for. However, in 
the case of steeply inclined ground surface, the stresses and displacements may be greatly 
influenced by these stresses. 
 
This calculation is not carried out for the elements which fall in the excavated zone. The 
equivalent load vectors due to initial stresses are then added for all elements with reversed 
sign to obtain the global load vector due to initial stresses. This load vector contains non 
zero loads only on the excavated surface, as at all other nodes, loads from adjoining 
elements equalise each other. This process allows any element to be declared as excavated 
easily. 
 
The stiffness matrix of the entire finite element mesh is obtained by assembling the 
contributions of all elements. This is done by adding together the contributions of each 
finite element to the force balance equations at the corresponding degrees of freedom. 
This process leads to the following global system of linear simultaneous equations. 
 
 [K] {δ} = {F}                                                                                             (17)  
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where, [K] is the global stiffness matrix of the assembled structure, {δ} is the nodal 
displacement vector and {F} is the load vector. 
 
3.     NON-LINEAR ELASTIC STRESS ANALYSIS 
 
In general, two types of non-linearity can be present in a system, viz., i) due to material 
non-linearity and  ii) due to geometric non-linearity. In both the cases, the finite element 
method can be applied to obtain a solution of the corresponding non-linear problem. 
Since the geometric non-linearity is of minor importance in underground openings, only 
non-linear material behaviour has been considered. To this end, a non-linear elastic stress 
analysis has been carried out wherein stress dependent elastic modulus (Janbu, 1963) has 
been employed in the constitutive equations, which may be written as, 
 
 {σ} = [Dσ] {ε} + {σ0 }                                                                                  (18)  
 
[Dσ]  is obtained by modifying [D] matrix to account for increased modulus of rock 
material and stiffness due to confinement. The following equation has been used to 
include the effect of pressure dependency. 
 

 
α

3
�
�

�
�
�

�

2
σ+σ

=
a

2
or P

  E          E                                                                 (19) 

 
where, 
Er    =   pressure dependent modulus of the rock, 
Eo    =  modulus of deformation corresponding to unit pressure (which may be                  

taken to be approximately equal to the modulus of deformation from                  
uniaxial compressive strength tests), 

σ2, σ3 =  intermediate and minor principal stresses, 
Pa   =  atmospheric pressure, and 
α        =  the modulus exponent may be obtained from triaxial tests conducted at                          

different confining pressure. 
 
In the non-linear elastic analysis, the forces due to full excavation have been applied 
directly. Step- by- step excavation has not been considered. Secant modulus approach has 
been employed in the analysis, in which total force is applied in the first iteration and then 
secant modulus is modified in subsequent iterations according to the state of stress at a 
Gaussian point. The limitation of the program is that it is not applicable to non-linear 
failure cases of the rock mass. In the non-linear analysis, which would be more realistic, 
the sequence of excavation and the stress path may be incorporated. The program is being 
extended for the simulation of excavation sequence. 
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4. MAIN FEATURES OF SOFTWARE 
 
The general purpose software ASARM (Analysis of Stresses in Anisotropic Rock 
Masses) has been developed for analysis of rock engineering problems with capability to 
simulate most of the problems associated with the geological discontinuities, like shear 
zones and fault zones. The 2- dimensional finite element software, developed for solving 
problems of plane stress, plane strain and axi-symmetric cases (Hinton and Owen, 1978), 
has been extended for non-linear elastic stress analysis of jointed rock masses in a 3- 
dimensional domain. The software may be useful for the analysis of slope stability, dam-
foundation interaction problems and underground caverns. 
 
The program consists of a MAIN program and 30 subroutines. The program structure is 
modular. The program has been written in FORTRAN. The geometry of the structure, the 
boundary conditions and the loadings are defined in global reference system.  
 
The elements may be subjected to concentrated (point) loads, constant and variable 
pressure (traction) loading and gravity loading. The forces due to in-situ (initial) stresses, 
may also be applied. Multiple load conditions are allowed. Tensile stress has been 
considered as positive. 
 
The program accommodates variation in material properties of the elements i.e. each 
element may have different material description. Isotropic and anisotropic continuum may 
be evaluated. The joint element facilitates modelling of interface between two different 
materials. 
 
Systems composed of a large number of nodal points and elements may be analyzed. The 
capacity of the program depends mainly on the total number of nodal points in the system. 
There is no restriction, as such, on the number of elements or number of load cases. 
However, band-width, of the set of the equations to be solved, is restricted by the RAM 
available, whereas, the size of the problem which may be accommodated depends on the 
space available on Hard-disk. Stiffness matrices of all the elements are generated and 
stored in a specific order and stored first before the solver comes into action. The solver 
does the job of assembly of element stiffness matrices and reduction of equation 
simultaneously to optimise on memory requirement. 
 
The program performs non-linear elastic stress analysis subjected to static loads only. In 
the present version of the program, all computations are done in double precision only for 
better numerical accuracy. 
 

The flow of logic in the program has been presented in the form of flow charts in Figs. 5 
to 8.  
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Fig. 5. Flow chart for finite element program for 3-dimensional non-linear  
elastic stress analysis 
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Fig. 6 – Flow chart for calculation of element stiffness matrix 
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Fig. 7 -   Flow chart for calculation of joint element stiffness matrix 
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Fig. 8 -  Flow chart for non-linear elastic stress-strain matrix [D] for  

anisotropic/jointed rock mass 
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4.1 Types of Elements Used 
 
The present version of the program uses 20 - noded isoparametric brick element and 16 - 
noded joint element. The 20 - noded brick elements have been used in simulating the 
isotropic and anisotropic jointed rock masses, whereas, 16 - noded 3-D joint element has 
been used in the simulation of the characteristics of the interface between two different 
rock masses. 
 
4.2 Material Characterization 
 
Large scale discontinuities, such as joints and bedding planes, present in the rock mass 
make the rock mass behaviour a complex one. This complexity of material has been dealt 
with using an equivalent continuous material representative of the rock mass. An 
anisotropic continuum model based on the average influence of joints has been used in 
the present study.  
In order to model the interface between two isolated and isotropic/anisotropic media, 16 - 
noded interface element has been employed. The material parameters kn  and  ks for this 
joint element also need to be given.   
 
4.3 Load Cases 
 
The program is especially suited to rock engineering problems, and therefore, has a 
provision for four different types of loading which may eventually be combined. The non-
linear elastic analysis implies the need for several iterations for a complex loading in 
order to obtain deformations approaching reality. 
 
Concentrated, gravity, pressure and initial stress loading use a consistent formulation as 
described earlier. The excavation simulation uses a special procedure described in 
subsequent section. 
 
4.4 Stress Redistribution due to Excavation 
 
The analysis of the excavation of an opening (Fig. 9a) is considered to be the sum of two 
separate cases as below (Fig. 9 b & 9 c).  
 
(i)  the given in-situ stress field and 
(ii)  the stresses due to release forces applied around the excavation. 
 
The procedure is shown diagrammatically in Fig. 9a, 9b and 9c. The stress and 
displacement results obtained for cases (b) and (c) will be the same as those for (a), if 
boundaries are taken to be sufficiently far away from the excavation. However, it may be 
noted here that the displacements due to in-situ stresses have not been accounted for as 
those displacements had already taken place before excavation. 
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5.   VALIDATION OF SOFTWARE 
 
5.1 General 
 
As the 3-D finite element software package developed in the present study for analysis of 
large underground cavities in jointed rock masses is quite general in nature, it is essential 
that the program is tested for its validation for solving some bench mark problems. Three 
typical problems have been chosen here from this point of view. These include: 
 
(i) Analysis of a shallow tunnel excavated in an isotropic rock medium, 
(ii) Analysis of a plate load test conducted on jointed rock mass and  
(iii) Analysis of circular slip failure in a jointed rock. 
 
Closed form analytical and/or a numerical solution are available for each of these three 
problems. Attempt has, therefore, been made here to solve these problems using the 
software and the results thus obtained have been compared with the available results to 
validate the software ‘ASARM’. 

 

 
Fig. 9 - Schematic diagram simulating in-situ stress and excavation 
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5.2 Analysis of a Shallow Tunnel 

5.2.1 Problem description and idealisation 

Case of a shallow tunnel excavated in an isotropic rock medium has been considered here 
for which closed form solution was presented by Jumikis (1983). The problem has also 
been solved numerically as a plane strain problem by Wang and Garga (1993) using 2-D 
finite element method. The problem consists of a tunnel with a radius of 2 m and 
excavated at a depth of 11 m below the ground surface. The geometry of the tunnel and 
the loads acting on it are shown in Fig. 10. The rock mass surrounding the tunnel is 
subjected to a vertical pressure intensity, σv = γH due to gravity and a lateral pressure 
intensity, σh = [µ/(1-µ)] γH. The rock material properties used in the analysis are given in 
Table 1. 
 

Table  1 - Material properties for analysis of shallow tunnel 
 

S. No. Property Symbol Unit Value 
1. Young’s Modulus E kN/m2 5x107 
2. Poisson’s Ratio µ - 0.25 
3. Unit Weight γ kN/m3 26.0 

 

 

Fig. 10 - Geometry and loading at a shallow underground circular tunnel (After Jumikis, 
1983 and Wang & Garga, 1993) 

 
The rock mass surrounding the tunnel is treated as a linear elastic and isotropic medium. 
Figure 11a shows a two dimensional finite element discretization of the tunnel geometry, 
under the assumption of plain strain, as adopted by Wang and Garga (1993). In the 
present study, the tunnel along with the surrounding rock medium has been treated as a 
three dimensional body and Fig. 11b shows the corresponding finite element 
discretization in which it is clear that along the axis of tunnel, five slices, each with a 
width of 3 m, have been used. Rock mass extending to seven times the tunnel radius has 



SAMADHIYA  N K ET.AL  -  3-D NON-LINEAR ELASTIC ANALYSIS CAVERNS 

 

69 

 

been considered in the plane of the tunnel, whereas it extends to 7.5 times the tunnel 
radius in the axial direction. Due to symmetry of both geometry as well as the loading, 
only half the geometry has been discretized. The finite element mesh consists of 245, 3-D 
brick element and 1427 nodes. The boundary conditions have been imposed on each 
boundary plane by restraining the displacement in the direction normal to the plane while 
permitting the in-plane displacement. 
 
5.2.2 Tunnel behaviour 
 
The behaviour of the tunnel with respect to stresses, predicted on the basis of the 
proposed software, has been compared in Fig. 12 with that obtained by Jumikis (1983) 
using a closed form solution and by Wang and Garga (1993) using a numerical solution. 
Figure 12 shows the variation of both the horizontal (σh) and vertical (σv) stresses along 
the line passing through the horizontal axis of the tunnel. The horizontal stress is zero at 
the tunnel boundary, increases to a little over to 0.1 MPa upto a distance of 1.0 m beyond 
the tunnel periphery and then remains practically constant over horizontal extent under 
consideration and equals the lateral applied pressure intensity. The vertical stress is 
maximum at the tunnel periphery and is of the order of 0.8 MPa which equals about three 
times the applied vertical pressure intensity. The solutions of the other two authors have 
also been superimposed in the same plot and show a very good comparison. 
 

 

Fig. 11a – Two dimensional discretization of shallow tunnel 
                                                         (after Wang & Garga, 1993) 
 
Figure 13a shows the distribution of principal stress and orientation of the principal 
planes for the shallow tunnel. It shows that the stresses get redistributed in the vicinity of 
the tunnel. On comparison with similar results obtained by Wang and Garga (1993), it 
becomes clear from Fig. 13b that both principal stress and orientation of principal planes 
compared very well with those presented in Fig. 13a. The stresses plotted are at the C.G. 
of each element. 
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It has also been found that the stresses in the all the five slices of rock medium considered 
along the axial direction of tunnel are equal. 
 
5.3 Analysis of a Plate Load Test on Jointed Rock Mass 
 
5.3.1 Problem description and idealisation 
 
A problem of plate load test conducted by Iida and Kobayashi (1972) on jointed rock 
mass has been considered for analysis. Cai and Horii (1993) modelled the whole test 
numerically by using finite element method for jointed rock mass. The test problem 
consisted of a plate of diameter, 800 mm placed in a test pit at a depth of 100 m. The 
influence of depth has been considered in the analysis by applying an equivalent in-situ 
stresses. From practical stand point, the problem has been simulated as a plate resting on 
a block having dimensions, 10D x 10Dx 5D where D is the plate diameter. A single set of 
joints has been considered traversing through the rock mass. Taking the advantage of 
symmetry, only one-half of the block has been analysed. The plate has been simulated as 
equivalent square plate. Figure 14 shows the finite element mesh used in the present 
study. 
 

 

Fig. 11b – Three dimensional finite element mesh for tunnel (Present study) 
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Fig. 12 - Horizontal and vertical stress distribution along axis I-I  

 
                         (a)  Present study                             (b)  After Wang & Garga, 1993 

 
Fig. 13 - Principal stress and orientation of principal planes for shallow tunnel 
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Fig. 14 - Finite element mesh used in 3-D analysis of plate loading test on jointed rock 
 
The mesh consists of 360, 3-D brick elements and 1973 nodes. Boundary conditions were 
imposed by restraining all the nodes lying at the boundary in all three directions, those 
lying on the plane of symmetry have been restrained only in the Y-direction. The material 
properties of the rock mass used in the analysis are presented in Table 2. 

 

Table 2 - Material properties for plate load test 

S. No. Property Symbol Unit Magnitude 

1 Young’s Modulus E kN/m2 21.2x106  
2. Poisson’s Ratio ν kN/m3 0.25 
3. Density γ  27 
4. Number of Joint Sets -  1 
5. Dip of Joints ψj  40o 
6. Dip direction of Joints αj  0o 
7. Joint Spacing   0.15 m 
8. Normal Stiffness of Joints  knl kN/m3 E/0.6, E/0.5, 

E/0.4 
9. Shear Stiffness ks kN/m3 knl/10 

 
5.3.2 Numerical results and comparison 
 
In the present study, the 3-D finite element analysis of plate load test data was carried out 
for three different values of the normal stiffness of joints in loading (Table 2). In order to 
simulate the experimental data of Iida and Kobayashi (1972) in a realistic manner (Fig. 
15), it is essential to perform a completely non-linear analysis including both loading and 
unloading situations. Similarly the experimental data also show that there are three cycles 
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of loading and two cycles of unloading. An incremental elasto-plastic analysis can also 
simulate the effect of these loading and unloading cycles and the resulting accumulated 
displacement. However, the software developed in the present study can take into account 
only linear and non-linear elastic situations. The unloading cycles have therefore not been 
simulated in the present study and once a linear analysis is performed, it can be done for 
only one cycle of loading. 
 

 
Fig. 15- Relations between the vertical load and the vertical displacement at the plate 

center 

 
Figure 15 shows load versus vertical settlement plot obtained in the present study for 
three values of normal stiffness of the rock joints and comparison with numerical results 
of Cai and Horii (1993). The experimental data of Iida and Kobayashi (1972) has also 
been superimposed in the same figure. Numerical results of the present study and those of 
Cai and Horii (1993) do agree with the experimental ones for the loading cycle and for 
the case when E/kn equals 0.5, results obtained in the present study coincide with those of 
Cai and Horii (1993). It is heartening to note that Singh and Goel (1982) have found E/kn   
to be about 0.6 m for continuous unweathered joints. 
 
5.4 Analysis of a Circular Slip in a Jointed Rock 
 
5.4.1 Problem definition 
 
The basic purpose of the joint element is to permit relative slip at the interface of two 
material blocks, made up of same or different materials. The software developed has also 
been tested for this feature of the joint element. A case of circular slip in a rock body has 
been analysed for this purpose. The finite element mesh used to model the system has 
been shown in Fig. 16. The mesh consists of six 20 - noded brick elements, three 16 
noded joint elements and 88 nodes. Boundary conditions have been imposed by 
restraining the base of lowermost three elements. The upper block is subjected to an 
uniformly distributed load of 100 kN/m2 as shown in Fig. 16. 
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Fig. 16 - Finite element mesh for modelling circular slip 

 
The system has been analysed for two different properties of joints, namely, i) low shear 
modulus, permitting the slip, and (ii) very high shear modulus simulating a welded 
contact between two joint planes. Material properties used in the analysis are presented in 
Table 3.  
 

Table  3 -  Rock material and rock joint properties 

S. No. Material Property Symbol Units Magnitude 

I. 
1. 
2. 

Rock Material 
 Young’s Modulus 
 Poisson’s ratio 

 
E 
ν 

 
kN/m2 

-- 

 
2.0x107 

0.2 
II 
 
3. 
4. 

Joint Element 
(Low Shear Modulus) 
 Shear Stiffnesses 
 Normal Stiffnesses 

 
 
ks1, ks2 
kn 

 
 
kN/m2 

kN/m2 

 
 
2000.0 
4.0 x107 

III 
 
5. 
6. 

Welded Contact 
(High Shear Modulus) 
 Shear Stiffnesses 
 Normal Stiffnesses 

 
 
ks1, ks2 
kn 

 
 
kN/m2 

kN/m2 

 
 
2.0 x107 

2.0 x 108 
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5.4.2 Numerical results 
 
The results obtained from the analysis have been presented in Fig. 17a for the case of low 
shear modulus and in Fig. 17b for the case of high shear modulus (welded joint). It may 
be observed (Fig. 17a) in the case of low shear modulus that the upper part of the block 
has slided as a rigid block along the joint surface under the applied loads. In the case of 
welded contact, no slip has been observed. The shear stresses along the slip surface of 
joint planes have been computed as 347.2 to 347.9 kN/m2. By Swedish circle method 
(Fellenius, 1926), the shear stresses are obtained as 348.0 kN/m2 when the rock mass has 
been considered as purely cohesive material, i.e. (φ = 0). Therefore the shear stresses 
obtained in the present study are in order.  

 
                  (a)  Low shear modulus                                     (b)   High shear modulus 

Fig. 17 -  Displacements of top block 
 
It is worth mentioning here that the purpose of this test case was to check whether the 
joint element is working or not. Therefore in order to test curvilinear joint element 
circular failure was considered. However the program may be checked for wedge failure 
also. Further when very low shear stiffness was considered, the slip occurred along the 
joint plane therefore the results were compared with (φ = 0) condition. 
 
6. CONCLUSIONS 
 
Based on finite element methodology, software for 3-dimensional linear and non-linear 
elastic stress analysis of large underground openings i.e. caverns has been developed. The 
program possesses the versatility associated with the material, geological configuration 
and geometry. Constitutive equations for the anisotropic rock mass and 3-Dimensional 
joint element have also been incorporated. It may be noted that the software may also be 
employed for the problems of 
 
(i)  abutment analysis and  
(ii)  dam-foundation interaction.  
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The program of this nature has to be used with great care in analysing practical design 
problems since there is seldom sufficient reliable information on rock mass 
characteristics and in-situ-stress field. However, it can be used for carrying out a number 
of parametric studies in which the various input assumptions are varied over their 
maximum credible range in order to determine their influence upon the calculated results. 
In this way, a range of possible solutions could be obtained and these can be used as an 
aid to practical common sense in reaching design decisions. 
 
An attempt has been made for validation of the 3-D finite element software developed as 
part of this study. Three problems have been chosen for the purpose. Barring the 
limitations of the program, it can be reasonably argued that the software may be 
successfully used for further analysis, especially the powerhouse caverns of the hydro-
power projects. 
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