Prediction of Stability of Underground Openings Using EMM

Anupam Mital & VK Arora

Department of Civil Engineering, National Institute of Technology, Kurukshetra – 136 119, India Phone: +91 1744 239993

ABSTRACT

Excavation of underground openings disturbs the state of equilibrium of stresses existing in a rock mass and causes their redistribution. For the design of an underground opening, prediction of its stability is the most important aspect. Amongst the various methods for their evaluation, EMM (equivalent material modelling) has an advantage of providing a physical feel of both the qualitative and quantitative understanding of the problem.

After developing suitable equivalent materials and preparation of models on selection of equivalent material compositions, the effect of height of overburden on stability of openings in stratified formation for rectangular openings has been studied.

The effect of height of overburden on limiting span of roof has been reported in the paper. The studies led to development of proper understanding of the ground response above an opening, well in advance, for the formation under consideration.

Keywords: Equivalent material model, Underground Opening, Stability

1. INTRODUCTION

The various factors affecting the stability of underground openings are the strength and the deformational characteristics of the rock mass, the in-situ state of stresses, the size and shape of the opening, the method and sequence of excavation, the rate of advance, the method of support and the water conditions, if any. Review of literature for the prediction of stability revealed that the designers and researchers have often restricted themselves to analytical, numerical and empirical methods requiring special assumptions, mathematical simplifications, statistically large database, providing lesser informations when applied to complex geological formations. A laboratory study of the effect of overburden on stability in horizontally stratified formations is reported in this paper.

Using EMM (equivalent material modelling), the work comprised of developing suitable equivalent model materials, modelling technique involving design of the equivalent formation, construction and testing of several models, adopting a geometrical scale of 1:50.

These studies enabled to evolve empirical relationships for the estimation of roof deformations and to find out the status of stability of an underground opening from non-dimensional plots and prediction of stable roof span.

This could be of significant help to the practicing engineers in the stability analysis and optimizing recovery of precious minerals.

The developed empirical relationships and non-dimensional plots have been applied to various tunnelling and mining projects and the results compared with the values obtained from actual observations and beam theory, in order to establish their applicability in the field.

2. EQUIVALENT MATERIAL MODELLING (EMM)

Equivalent material modelling technique is based upon dimensional analysis and similitude. It provides an effective means for imitating a specific real situation. Here, the qualitative and quantitative analysis of underground openings can be ascertained. The post-failure behaviour of the rock mass surrounding the opening can also be very well ascertained (Bieniawski,1984 and Singh et al.,1985).

In order to achieve best comparable results with the prototype, selection of artificial equivalent materials, model construction and model workings have to be performed faithfully.

3. PHYSICO-MECHANICAL ROPERTIES OF MODEL MATERIALS

For developing suitable equivalent model materials, 46 mixes of plaster of Paris, fine sand and mica powder were investigated. The prismatic specimens prepared from these mixes were tested for compressive strength, tensile strength both along and across the axis and flexural strength along with determination of density. The results of these tests on various EM compositions provided a wide range of equivalent materials with their mean values arrived at after testing 5 to 6 samples for each test (Table 1). The density of EM compositions varied from 770 kg/m³ to 1190 kg/m³. The compressive strength varied from 94.736 kPa to 542.131 kPa. Tensile strength along the axis varied from 24.812 kPa to 103.366 kPa and across the axis varied from 20.104 kPa to 127.687 kPa. The flexural strength varied from 83.163 kPa to 245.763 kPa.

EM	POP/Sand/	UN	Density	Compressive	Tensile s	Flexural	
composition	Mica %	or N	$\rho_{\rm m}$	strength	1-D	strength	
code	volume		kg/m ³	(σ_c) _m kPa	Along the	a A ana ao tha	$(\sigma_f)_m$ kPa
					Along the α	Across the $\alpha_{\rm res}$	
					axis (0 _{t1}) _m	$axis (O_{t2})_m$	
I-A	15/30/55	UN	771	152.401	27.558	44.328	102.875
		N		94.736	24.812	21.968	(83.163)
I-B	15/35/50	UN	830	172.113	29.225	44.916	105.327
		N		111.898	25.302	22.360	(83.163)
I-C	15/40/45	UN	880	190.354	31.088	45.701	107.779
		N		126.608	25.890	22.752	(83.163)
I-D	15/45/40	UN	921	183.783	33.540	46.289	132.395
		N		132.983	28.146	26.185	100.326
I-E	15/50/35	UN	1000	176.232	37.365	47.858	156.520
		N		141.123	31.382	29.813	120.038
I-F	15/55/30	UN	1030	200.651	41.680	48.250	169.367
	1 5 1 5 0 10 5	N	1000	145.928	30.794	24.714	115.134
I-G	15/60/25	UN	1080	227.817	44.033	48.741	176.722
	1.5/55/20	N		149.459	29.323	23.145	107.779
I-H	15/65/20	UN	1121	212.420	42.268	46.387	169.367
	15/50/15	N	1110	149.066	27.656	20.889	102.875
1-1	15/70/15	UN	1149	200.847	40.993	44.426	162.012
		N		148.968	25.792	(20.104)	85.615
II-A	20/30/50	UN	829	219.383	49.623	66.001	168.877
	20/25/45	N	001	146.026	47.858	46.191	107.289
II-B	20/35/45	UN	881	226.247	51.781	66.688	174.270
шо	20/40/40	N	010	159.462	47.270	43.249	114.644
II-C	20/40/40	UN	919	227.326	53.546	6/.1/8	1/8.684
U.D.	20/45/25	N	1001	1/0.544	45.995	40.405	119.547
II-D	20/45/35	UN	1001	321.572	55.998	11.573	187.314
ЦЕ	20/50/20		1020	213.204	49.231	40.797	120.038
II-E	20/30/30	UN N	1029	382.179	51.201	81.394	194.707
ПЕ	20/55/25		1020	426.706	58.040	30.078	201.026
Ш-Г	20/33/23	UN N	1080	430.700	50.940	80.400	201.920
ПС	20/60/20		1120	497.212	50.212	40.001	200.281
11-0	20/00/20	UN N	1120	407.212	18 642	90.322	125 520
пп	20/65/15		1151	457 200	60.117	44.230 88.040	204 278
11-11	20/03/13	N	1151	247.136	46.877	42 025	120 528
пт	20/70/10		1100	418 661	59.627	45.955 86.604	120.528
11-1	20/70/10	N	1190	246.254	45 308	42 170	115 625
ΠL-Δ	25/40/35	UN	1030	472 795	91.401	122 391	230.465
111-74	25/40/35	N	1050	315 295	82 183	81.006	209 281
III-R	25/45/30	UN	1079	523 988	97 384	125 530	236 839
	25,45,50	N	10/7	338 243	81.006	76 102	186 627
III-C	25/50/25	UN	1120	542 131	103 366	127.687	245 763
	25,50,25	N	1120	361 192	76.00/	70.218	168 386
III-D	25/55/20	UN	1150	528 793	99 345	126 805	231 445
mb	25/55/20	N	1150	352 758	74 337	68 747	141 809
III-E	25/60/15	UN	1191	515 848	95.422	125 726	214 185
	20,00/10	N	11/1	343,833	73.062	67.080	108,760

Table 1- Physico-mechanical properties of equivalent materials

Notations: UN = unnotched sample; N = notched sample with 8 minutes delay in notching

4. DEVELOPMENT OF MODELLING TECHNIQUE

Using equivalent material modelling technique, it was intended to have a better physical feel of the problem by considering simple rectangular opening through an actual field stratified formations of a Colliery in Jharia coal field, Bihar.

The work comprised of developing suitable equivalent model materials for preparation of prismatic specimens of varying strengths. A weakening coefficient of 0.5 was arrived at after testing of a preliminary model. Using Buckingham – Pi dimensional relationship incorporating weakening coefficient, equivalent strengths were calculated using the following equation known as designing equation.

$$\sigma_{\rm m} = \alpha_{\rm L}.{\rm K}.\frac{\rho_{\rm m}}{\rho_{\rm p}}.\sigma_{\rm p} \tag{1}$$

where

 σ_m = model material strength in kPa,

 $\alpha_{\rm L}$ = geometrical scale,

K = weakening coefficient,

 $\rho_{\rm m}$ = density of model material in kg/m³,

 ρ_p = density of proto material in kg/m³ and

 $\sigma_{\rm p}$ = proto material strength in kPa.

Thereafter, equivalent material compositions were selected for model simulation of the proto formation and laid in layers after working out the quantities of various ingredients per layer, in a model frame of size $3.00 \text{ m} \times 1.80 \text{ m} \times 0.25 \text{ m}$ specially designed and fabricated for the purpose.

In all, four models of size $3.00 \text{ m} \times 1.17 \text{ m} \times 0.25 \text{ m}$ were prepared (Fig. 1). A part of the overburden (38.5 m) was simulated in these models above the proposed opening, i.e. roof level. For the remaining rock mass above the overburden simulated, the overburden height was simulated by applying required surcharge pressures on the top of the formation to bring the opening under the influence of desired height of overburdens. The models were instrumented using LVDTs for the measurement of deformations.

5. TESTING OF MODELS

Four models were tested for roof deformational behaviour for heights of overburden above the opening of 5600 mm, 4200 mm, 2800 mm and 1400 mm corresponding to proto overburdens of 280 m, 210 m, 140 m and 70 m respectively till failure, varying the width of the opening.

The roof deformations were measured at various monitoring points fixed along rows and columns above the opening (Fig. 2). Deformations were measured before and after every excavation stage and also during the equivalent cycle of operation of 4 cm per 30 minutes in the model corresponding to the normal operational cycle of 2 m per 3 hours and 30 minutes in the field. Here, prominent phenomena were observed visually (Fig. 3) and recorded photographically at frequent intervals.

6. **RESULTS AND DISCUSSION**

6.1 Effect of Overburden on Deformation of Roof

A comparison of deformations recorded by LVDT No. 1 positioned 20 mm above the roof along the centre line of opening, is presented in Table 2 and Fig. 4 for various models tested under different heights of overburden. The interpretation of test results (Table 2) and test plot (Fig. 4) reveals that the deformation increases with increase in overburden height, for all widths of opening. The percentage increase in deformation with percentage increase in overburden height for a given width of opening of 240 mm is as follows:

- (i) 100 % increase in overburden height increases deformation by 170.19 %.
- (ii) 200 % increase in overburden height increases deformation by 275.00 %.
- (iii) 300 % increase in overburden height increases deformation by 382.69 %.

Further,

- (i) 100 % increase in overburden height increases deformation by 170.19 %.
- (ii) Subsequent 100 % increase in overburden height further increases deformation by 38.79 %.
- (iii) Further subsequent 100 % increase in overburden height further increases deformation by 28.72 %.

Model	Overburden	Deformation mm at LVDT No. 1									
	height H _m ,	Width of opening,									
	mm	mm									
		80	120	160	200	240	280	300	320	340	360
3	1400	0.01	0.09	0.31	0.62	1.04	1.56	-	2.74	-	4.09
2	2800	0.11	0.42	0.90	1.60	2.81	5.96	-	6.68	O.O.R.	0.0.R.
5	4200	0.24	0.54	1.30	2.22	3.90	6.69	-	O.O.R.	O.O.R.	0.0.R.
1	5600	0.35	0.68	1.51	2.85	5.02	7.42	0.0	0.0.R.	0.0.R.	0.0.R.
								.R.			

 Table 2 - Deformations measured at monitoring point 1 for various overburden heights

The percentage variation of increase of deformation with overburden height (1400 mm onwards) is shown in Fig. 5. From the figure, it is observed that for a given width of opening, the increase of deformation decreases with increase in overburden height and the curve finally becomes asymptotic. At this stage, the results are in line with the beam theory, as per which, the deformation of the roof is independent of the height of overburden above the opening. Similar behaviour was observed for all other widths of opening.

6.2 Effect of Overburden on Stability

To study the effect of height of overburden (H_m) on stability, a comparison of stable width of opening (w_m) or limiting span of roof is presented in Table 2 and Fig. 6 for various models tested under different heights of overburden. From the table and figure, it is observed that the limiting span of the roof decreases with increase in overburden height. The percentage decrease in the limiting span of roof with percentage increase in overburden height (1400 mm onwards) is as follows:

- (i) 100 % increase in overburden height decreases the limiting span of roof by 15.00 %.
- (ii) 200 % increase in overburden height decreases the limiting span of roof by 22.50 %.
- (iii)300 % increase in overburden height decreases the limiting span of roof by 25.00 %.

Further,

- (i) 100 % increase in overburden height decreases the limiting span of roof by 15.00 %.
- (ii) Subsequent 100 % increase in overburden height further decreases the limiting span of roof by 8.82 %.
- (iii)Further subsequent 100 % increase in overburden height further decreases the limiting span of roof by 3.23 %.

The percentage variation of decrease in limiting span of roof with overburden height (1400 mm onwards) is shown in Fig. 7. From the figure, it is observed that decrease in the limiting span of roof decreases with increase in overburden height and the curve finally becomes asymptotic. At this stage, the results are again in line with the beam theory, as per which, the limiting span of roof is independent of the height of overburden above the opening.

6.3 Comparison of Predicted and Observed Roof Spans for Stability

The observed stable roof spans for the four overburdens are compared with the values of predicted roof spans, applying beam theory to the models using the following equation:

$$L = \sqrt{\frac{2\sigma_t K t}{\gamma}}$$
(2)

The predicted stable roof spans are quite close to their observed values in the models. In calculating the predicted roof spans using beam theory, the following assumptions have been considered.

(i) to be conservative, the horizontal stress (σ_h) acting on the beam is taken as zero.

(ii) under the overburden pressure, the roof strata is solidly clamped at the side walls and is considered to behave like fixed or ideal beam.

Using beam theory for the models 4,3, 2 and 1,

Here,
$$\sigma_t = 21.968 \text{ kPa} = 21968 \text{ Pa} = 21968 \text{ N/m}^2$$

 $t = 40 \text{ mm} = 0.04 \text{ m}$
 $\gamma = 771 \times 9.807 \text{ N/m}^3$
 $K = 0.5$
 \therefore Limiting span $L = \sqrt{\frac{2 \times 21968 \times 0.5 \times 0.04}{771 \times 9.807}}$
 $= 0.341 \text{ m}$
 $= 341 \text{ mm}$

The observed stable roof spans for the above four models are compared with the predicted stable roof span using beam theory and the percentage variation is as under:

Model	Overburden,	Observed stable	Predicted stable	Variation
	kN/m ²	roof span, mm	roof span, mm	%
4	14.763	400	341	14.75
3	29.526	340	341	00.29
2	44.289	310	341	10.00
1	59.052	300	341	13.67

Table 3 – Percentage variation of observed and predicted stable roof span

Hence, the predicted stable roof spans are quite close to the observed stable roof spans. The decrease in the observed stable roof spans with increase in overburden can be attributed to the fact that a mine roof, even if resolved to an equivalent beam, differs from a fixed-end, self-loaded beam as it always carries a load of the overlying mass until delamination due to differential deflection. By that time, the tensile strength drops to a certain residual value (Singh, 1991).

Hence, the limiting span (L) is a function of overburden (P_o or γH) alongwith other parameters such as tensile strength (σ_t), thickness of the layer (t), weakening coefficiant (K) and the unit weight of the layer (γ), i.e.

$$L = f(P_o, \sigma_t, t, K, \gamma)$$
(3)

An attempt was made to establish a relation between the limiting span (L) with P_o , σ_t , t, K and γ and the following relation was established (Mittal, 2000):

$$L = 1.7664 \sqrt{\frac{\sigma_t K t}{\gamma}} e^{-6.0 \times 10^{-6} P_o}$$
(4)

where L is in metres, P_o is in N/m², σ_t is in N/m², t is in metres and γ is in N/m³.

The limiting span from above equation has been found to be close to the actual values with in permissible limits of variation. Hence, it may be applied in the field using a safety factor to cover unforeseen geological defects in the roof.

7. CONCLUSION

EMM studies on underground openings led to the development of proper understanding of the ground response above an opening, well in advance, for the formation under consideration. The developed relationship could be of help in the design of the actual opening. These might act as guidelines, in simple terms, particularly for underdeveloped areas where underground excavations are still being carried out on traditional lines in unscientific and haphazard manner. EMM, though labour intensive, is economical and will constitute a very small percentage of the project cost. This will help in minimising ground control hazards while at the same time maximising recovery at an acceptable cost.

Reference

- Bieniawski, Z.T. (1984). Rock Mechanics Design in Mining and Tunnelling, A.A. Balkema, Rotterdam, The Netherlands.
- Singh, T.N. and Farmer, I.W. (1985). A Physical Model of an Underground Coal Mine Prototype. Mining Engineering, Vol. 3, pp.319-326.
- Singh, T.N. (1991). Underground Winning of Coal. Oxford and IBH, New Delhi, India.
- Mittal, Anupam (2000). Model Studies on Underground Openings in Stratified Rocks, Ph.D. Thesis, Kurukshetra University, Kurukshetra, India.

Fig. 1 - View of completed model

Fig. 2 - Configuration of monitoring points for Model 1

Fig. 4 – Comparison of deformations recorded by LVDT 1, positioned 20mm above the opening along the centre line of opening

Fig. 5 - Per cent variation of increase of deformation of roof of opening with overburden height

Fig. 6 - Variation of limiting span of roof with height of overburden

Fig. 7 – Variation of decrease in limiting span of roof with overburden height

141