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ABSTRACT 
 
The application of rock mass – tunnel support interaction analysis in designing the 
tunnel support system is well known. The interaction analysis includes the prediction of 
both ground response and the support reaction curves. In this Part-I of the paper, an 
approach has been proposed for quick and reliable determination of the ground response 
curve, both for self supporting / non-squeezing ground condition and the squeezing 
ground condition. The dominating influence of the intermediate principal stress has 
been accounted for in the analysis. The approach has been proposed on the basis of field 
studies conducted in nine different tunnelling projects in India and the analysis of field 
instrumentation data. Using this field data, correlations have also been proposed for 
predicting the tunnelling conditions, modulus of deformation of rock mass, influence of 
depth on modulus of deformation and the apparent strength enhancement. 
  
Keywords: Rock mass; Tunnel support interaction; Ground response curve. 
 
 
1. INTRODUCTION 
 
Morrison and Coates (1955) were the first to assume the reduced strength of rock mass 
in plastic zone around the tunnel and used an elastic-brittle plastic model for prediction 
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of displacements and stresses around its periphery. Later, several authors considered an 
elastic-strain softening behavior of rock mass using a tri-linear stress-strain law (Diest, 
1967; Daemen and Fairhurst, 1971; Hendron and Aiyer, 1972; Egger, 1974; Panet, 
1976; Korbin, 1976; Brown et al., 1983 and Sharma, 1985). Fritz (1984) assumed that 
rock mass behavior in plastic zone is primarily governed by the properties of the plastic 
St. Venant element. 
 
Brown et al. (1989) proposed solutions for stresses and strains around an axi-symmetric 
excavation in an infinite media considering the power law and exponential variation of 
elastic modulus with minor principal stress. Histake et al. (1989) considered peak and 
residual strength criteria and non-linear stress-strain relations which change with 
confining pressure. Carter and Booker (1990) studied the influence of the rate of 
excavation on stress distribution around circular tunnels and concluded that rapid 
excavation may result in a significant change in short-term stress distribution. 
 
Early solutions proposed by Morrison and Coates (1955), Hobbs (1966), Bray (1967), 
and Diest (1967) did not include any treatment of plastic volumetric strains, although 
some of them allowed for a strength reduction in the plastic zone. Labasse (1949), 
however, evaluated an average plastic dilation in the rock mass. The concept was later 
used by others including Lombardi (1970), Daemen and Fairhurst (1971), Ladanyi 
(1974) and Jethwa (1981). Influence of parameters like face advance and shear stress on 
support pressure were studied by Jethwa (1981) who modified Daeman’s (1975) 
equation for short-term support pressure to include these effects. 
 
Convergence confinement method of tunnel design, which is based on rock mass – 
tunnel support interaction concept was discussed in detail by Gesta et al. (1980), 
Duddeck (1980) and Lombardi (1970). Based on a comparison of analytical results with 
field measurements, Eisenstein and Branco (1991) concluded that while the method is 
applicable to deep tunnels, it is not suitable for shallow tunnels due to non-axi-
symmetric mode of deformation and development of plasticity in the latter. Corbetta et 
al. (1991) included the effect of distance from the tunnel face at the time of support 
installation in convergence confinement method and applied it to an elastic – perfectly 
plastic ground.  
 
 
2. STATEMENT OF PROBLEM 
 
Prediction of ground response curves in elastic and squeezing grounds, using the 
approaches discussed earlier, depends upon a number of input parameters some of 
which are difficult to estimate, thus affecting the reliability of analytical results. Limited 
studies are available as regards cross-checking of theoretical results with field 
observations. Mohr-Coulomb theory is not valid for anisotropic and jointed rock masses 
and in-situ stress along the tunnel axis (intermediate principal stress) may reduce 
support pressures drastically. There is, therefore, a need to develop a simple, yet reliable 
approach for the prediction of ground response curves directly from the data of 
instrumented tunnels. 
 



M.N. VILADKAR ET AL – ROCK MASS – TUNNEL SUPPORT INTERACTION ANALYSIS: PART  I 
 

105 

3. FIELD INSTRUMENTATION AND MONITORING OF TUNNELS 
 
Monitoring of the rock mass behavior by field instrumentation is the backbone of the 
observational method of tunnel support design based on “Design As You Go” 
philosophy of NATM. The tunnel instrumentation formed an important part of a 
comprehensive field study carried out at nine tunnelling project sites in India with a 
view to develop an approach for determination of ground response and support reaction 
curves. The field study comprised of:  
 
(i)  instrumentation to measure support pressures and tunnel deformations,  
(ii)  estimation of Barton’s (1974) rock mass quality, Q and Bieniawski’s (1979) rock 

mass rating, RMR at instrumented and other tunnel sections,  
(iii)  collection of other relevant data such as type of rock mass, modulus of deformation, 

uni-axial compressive strength etc. wherever available,  
(iv)  collection of geometric details of tunnels such as direction of tunnel axis, size and 

shape of tunnel, depth/height of overburden, and  
(v)  collection of details related to tunnel support systems such as dates of tunnel 

excavation and support installation for each instrumented section, section of steel 
ribs used, type and thickness of backfill etc.  

 
This field study was carried out at 63 different tunnel sections of nine tunnelling project 
sites in India. Out of these, details of about 30 sections of 9 tunnelling projects are 
presented in Tables 1 and 2 for tunnels excavated in non-squeezing and squeezing 
ground conditions respectively along with details of various rock types encountered, 
rock mass quality, Q, depth of overburden, H and the tunnel size. 
 

Table 1 - Tunnel sections in India in non-squeezing ground condition 

S. 
No. 

Project Section 
chainage 
(m) 

Rock type Q Height of 
overburden 
(m) 

Excavation 
diameter 
(m) 

1 Tehri Hydro Project, lower 
Himalaya, Uttar Pradesh 

a) 828, 
HRT-3 

Phyllites 
Grade (Gr)-III 

0.36 295 9.5 

  b) 829, 
HRT-3 

Phyllites Gr-III 0.36 295 9.5 

  c) 683, 
LBDT-1 

Phyllites Gr-I 14 225 13.0 

  d) 614, 
RBDT-1 

Phyllites Gr-II 
with bands of 
Gr-I 

3.2 240 13.0 

  e) 615, 
RBDT-1 

Phyllites Gr-II 
with bands of 
Gr-I 

3.2 240 13.0 

2 Maneri Uttrakashi Tunnel, 
lower Himalaya,Uttarakhand 

a) 789.5, 
u/s Heena 

Metabasics 
with a 1.5 m 
thick shear 
zone 

0.66 
– 
0.10 

367 5.8 

  b) 1060, u/s 
Heena 

Foliated 
Metabasica 

3.4 – 
6.8 

234 5.8 

  c) 738.5, 
d/s Maneri 

Moderately 
Foliated 
Quartzites 

3 – 6  250 5.8 
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  d) 1310, u/s 
Uttarkashi 

Foliated 
Metabasics 

3.4 – 
6.8 

467 5.8 

3 Maneri stage-II, lower 
Himalaya Uttarakhand 

a) 1568.5, 
u/s Dharasu 

Greywackes 2.75 100 7.0 

  b) 1680.75, 
u/s  
Dharasu 

Greywackes 1.02 175 7.0 

4 Tandsi Mine, M.P. a) 0.60 Talchirs 11.8 16 5.4 
  b) 0.80 Talchirs 32 18 5.4 
  c) 0.22 Talchirs 1.1 67 5.4 
  d) 0.265 Talchirs 9.07 88 5.4 
5 Bagur-Navile Tunnel, 

Hemavathy Irrigation 
Project, Karnataka 

a) 6380 Schistose 
Gneiss 

0.08 45 6.0 

  b) 10678 Schistose 
Gneiss 

13.53 50 6.0 

  c) 8695 Schistose 
Gneiss 

13.53 49 6.0 

6 Lower Periyar Project, 
Kerala 

a) 2361 Granite-biotite 
gneiss 

4.4 120 6.8 

  b) 6218 Granite- biotite 
gneiss 

5.5 197 6.8 

Notation:  Q – Barton’s rock mass quality; HRT – Head race tunnel;  LBDT – Left bank diversion tunnel; RBDT – 
Right bank diversion tunnel;  u/s – Upstream;  d/s – Downstream 

 

Table 2 - Tunnel sections in India in squeezing ground condition 

S. 
No. 

Project Section 
chainage (m) 

Rock type Q Height of 
overburden 
(m) 

Excavation 
diameter (m) 

1 Maneri stage-II, lower 
Himalaya, Uttarakhand 

a) 50.5 
Dhanarigad 
drift (u/s) 

Metabasics 0.88 710 2.5 

  b) 51 
Dhanarigad 
drift (u/s) 

Metabasics 0.88 710 2.5 

  c) 777.2 
Dhanarigad 
drift (u/s) 

Crished 
Quartzites 

0.18 705 7.0 

2 Giri Hydro Project, 
lower Himalaya, H.P. 

- Completely 
crushed 
phyllites 

0.062 
– 0.32 

240 4.8 

  - Very blocky 
& seamy 
slates 

0.32 – 
0.82 

380 4.8 

3 Chhibro-Khodri Tunnel, 
Yamuna Hydro Project, 
lower Himalaya, 
Uttarakhand 

a) 2575 Red shales 0.025 
– 0.1 

280 3.0 

  b) 2621 Black clays & 
seamy slates 

0.016 
– 0.03 

280 3.0 

  c) 1199 Crushed red 
shales 

0.012 
– 0.05 

680 9.0 

4 Loktak Hydro Project, 
Manipur 

- Shales 0.011 
– 
0.044 

300 4.8 
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The main purpose of field work was to study the response of ground upon excavation 
and support behavior at various tunnel sections, with a view to develop empirical/semi-
empirical approach for predicting ground response and support reaction curves. The 
scheme of instrumentation, therefore, consisted of monitoring these two parameters 
using : i)mechanical load cells with dial gauge and vibrating wire type electrical load 
cells having a battery operated portable electrical read-out unit and a digital display, for 
measuring hoop load in steel ribs, ii)contact pressure cells to measure the contact 
(support) pressure which were installed before the backfill was placed on the outer 
flange of steel ribs, iii)tape extensometers / distomat to measure the tunnel closure, and 
iv)single point and multiple point borehole extensometers (SPBX/MPBX) installed at 
some of the tunnel sections to monitor deep seated radial displacements in rock mass 
around the tunnel periphery at different depths. 

  
4. IMPORTANCE OF UNRECORDED DATA 
 
It is often not possible to commence the measurement of tunnel closure and support 
pressures with time immediately after excavation as some time is always involved in 
mucking-out operation, installation of supports and instrumentation. The unrecorded 
tunnel closure data lost during this period can be very significant as it influences the 
observed support reaction curve and therefore the equilibrium conditions of the tunnel. 
This unrecorded data could be obtained by: i)plotting the recorded radial tunnel closure 
with time on log-log scale, ii)extending the initial straight line portion of the curve to 
the ordinate axis to get the logarithmic value of extrapolated closure corresponding to 
date of excavation, and iii)conversion of the extrapolated logarithmic value of closure to 
natural scale so as to obtain the actual value of tunnel closure, extrapolated to the date 
of excavation which is then added uniformly to the values of radial closure in order to 
account for the missing data. This is shown in Fig. 1. It is often seen that dates of 
excavation, support installation and first observation of closure are totally different. The 
correct coordinates of the point of intersection, C in Fig. 1, are XDOE which is the final 
closure extrapolated to the date of excavation and XDOSI which is the support pressure 
after extrapolation to date of support installation. This is because whereas the ground 
response curve (GRC) starts at point, A immediately after excavation, the support 
reaction curve (SRC) comes into picture only after the supports are installed (Point B). 
It would therefore be incorrect to extrapolate both support pressure and tunnel closure to 
the date of excavation (Point D) to obtain the observed support reaction curve. Similarly 
their extrapolation to the date of support installation would also be incorrect. Also, it 
would be incorrect to plot SRC on basis of only the recorded data without due 
consideration to unrecorded observations. 

 
5. PREDICTION OF GROUND CONDITION 
 
Before performing rock mass – tunnel support interaction analysis, it is important to 
know the ground condition a priory, since ground behavior and the approach for 
prediction of ground response curve differs according to the ground condition. Here, an 
approach has been proposed to predict three ground conditions; namely, i) self 
supporting condition, ii) non-squeezing ground condition and iii) squeezing ground 
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condition. The ground response curves for all these three conditions are qualitatively 
depicted in Fig. 2. 

 

Fig. 1 - Influence of unrecorded data on support reaction curve and  
point of intersection. 

 

 

Fig. 2 - Ground response and support reaction curves for three tunnelling conditions 
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Data obtained during various field studies conducted at several Indian tunnel project 
sites, both in non-squeezing and squeezing ground conditions and also the data from 
some case histories reported by Barton et al. (1974) were analyzed. This analysis is  
presented in Fig. 3 in the form of a log-log plot of Barton’s rock  mass quality, Q versus 
[H (B - Bs)

0.1], where H is the height of overburden (m), B, the tunnel width or span (m) 
and Bs, the self supporting span (m) given by Barton et al. (1974) as – 

 
Bs = 2 (ESR) . Q0.4       (1a) 

 
where ESR is the excavation support ratio, which for power tunnels, minor tunnels, rail 
and road tunnels is usually 1.6. The Eq. 1a, can therefore be written as – 
  

Bs = 3.2.Q0.4       (1b) 
 

 
 

Fig. 3 - Correction for prediction of ground condition 
 
In Fig. 3, points pertaining to squeezing cases may be clearly separated from those 
belonging to the non-squeezing (elastic) cases by an inclined line, defined by - 

 
H (B - Bs)

0.1 =  483 Q1/3       (2) 
 
Therefore, for squeezing to occur, left hand side of Eq. 2 should be greater than the right 
hand side. Occurrence of a particular tunnelling condition may, therefore, be predicted 
by the following empirical correlations: 

 
(B - Bs) < 0              (for self-supporting condition)  (3a) 
 
H (B - Bs)

0.1 < 483 Q1/3 (for non-squeezing condition)   (3b) 
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H ( B - Bs)

0.1 > 483 Q1/3 (for squeezing condition)   (3c) 
 
Jr/Ja < ½         (3d) 

 
In brittle, massive rocks, rock burst may occur instead of squeezing as predicted from 
Eq. 3c where Jr/Ja > 0.5. It may be mentioned here that theoretically (according to the 
proposed strength criterion, Eq. 13c), squeezing condition around a tunnel opening may 
be encountered if, 
  

σθ > qcmass + A.po /2        (4a) 
 
where σθ is the tangential stress and qcmass is the uni-axial compressive strength of the 
rock mass and po is the in-situ stress along tunnel axis. Equation (4a) may be written as 
follows for a circular tunnel under hydrostatic stress field: 
 
 2P > qcmass + A.po/2        (4b) 
 
where P is the magnitude of in-situ stress and A is a rock mass constant. 
 
Use of the theoretical criterion for prediction of squeezing ground condition, given by 
Eq. (4b), poses practical difficulties as the measurement of in-situ stress and in-situ 
compressive strength of rock mass is both expensive and time consuming especially in 
developing countries. This problem can be overcome by using the empirical criteria 
(Eqs. 3a, b, c) for prediction of squeezing. 
 
Results of the above analysis are presented in the form of a design chart (Fig. 4) plotted 
on log-log scale. It is clear from this chart that once the values of depth of overburden, 
H and rock mass quality, Q are known, the designer can pick up the critical value of B 
below which squeezing is not likely to occur. For doing so, the first step is to pick up 
the critical value of (B-Bs) for given values of H and Q from the upper part of the design 
chart, which is based on Eq. 2. The value of Bs for this Q value is then selected from the 
lower part of the chart, which represents Eq. 1b, and this value of Bs is added to the 
critical value of (B-Bs) to arrive at the critical value of B. It may be noted that: 
 
(a) For performing rock mass – tunnel support interaction analysis, it is necessary to 

know the ground condition as the approach for prediction of ground response curve 
is different for non-squeezing and squeezing ground cases. The ground condition 
may be predicted approximately using Eqs. 3a, b and c. Thus, classifying a rock 
mass as a squeezing rock is not correct. Any rock mass may turn into squeezing 
rock condition at higher overburden. 

(b) In case a tunnel is likely to experience squeezing ground condition, the tunnel 
alignment may possibly be changed to obtain a better rock mass quality, Q or 
reduced overburden or both so as to avoid squeezing and thereby eliminate/reduce 
the support problems. Similarly non-squeezing ground condition may possibly be 
changed to the self-supporting condition by obtaining a better rock mass quality, Q 
as a result of the changed tunnel alignment. 
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(c) Alternatively, two or three smaller tunnels may be chosen instead of a larger tunnel 
in order to avoid squeezing ground conditions thereby reducing the support 
problems and the construction time. This was done in Chhibro-Khodri tunnel in the 
state of Uttarakhand (India) when it became extremely difficult to drive a 9m 
diameter tunnel through squeezing ground condition. 

 

 

Fig. 4 - Design chart for selecting tunnel size for given tunnel depth and rock mass 
quality to achieve favorable ground condition 

 

6. PREDICTION OF GROUND RESPONSE CURVE 
 
6.1 Self Supporting/Non-Squeezing Ground Condition 
 
For a circular tunnel driven through  homogeneous, isotropic and linearly elastic rock 
mass experiencing hydrostatic stress condition, ground response curve for  elastic 
ground condition (representing both self-supporting and non-squeezing conditions) may 
be obtained from theory of elasticity using the following equation – 
 
 ua/a = (1+ν) (po – pi) /Ed      (5) 
 
where, ua = the radial tunnel closure,  a = the  radius of tunnel opening, ν = the 
Poisson’s ratio of rock mass,  Ed = the modulus of deformation of rock mass, po = the 
in-situ hydrostatic stress and pi = the required short-term support pressure. The ground 
response curve may be obtained by plotting pi/po versus ua/a. It may be seen from Eq. 5 
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that the ground response curve is predicted to be a straight line relationship for the non-
squeezing (elastic) ground condition. 
 
6.1.1 Empirical correlation for modulus of deformation of rock mass 
 
The modulus of deformation in Eq. 5 is normally obtained from expensive and time 
consuming uni-axial jacking tests which often give a large scatter in results. Therefore, 
the following simple empirical correlation has been obtained to determine the modulus 
of deformation of nearly dry rock masses, Ed : 
 
 Ed = f . 10(RMR – 20 ) / 38     GPa    (5a) 
 
where, RMR represents Bieniawski’s  rock mass rating, and f, the correction factor for 
the effect of depth. The above correlation is based on  back analysis of values of 
modulus of deformation obtained from the data of support pressures and tunnel closure 
which were observed at several tunnel sections in non-squeezing ground condition 
(RMR values ranging from 31 to 68). The back analysis was performed by using Eq. 5 
for which the observed values of ua and pi and assumed value of ν equal to 0.25 were 
used for different tunnel sections. Assuming a hydrostatic stress field, po was considered 
equal to γH and its values for different tunnel sections were accordingly obtained. The 
back-analyzed values of modulus of deformation have been plotted versus RMR in Fig. 
5 which shows the best-fit curve represented by Eq. 5a and has a correlation coefficient 
of 91% . Mehrotra (1992) also obtained nearly the same correlation with f =1 from uni-
axial jacking tests on dry rock masses. Thus, one may use Eq. 5a with confidence in 
poor rock conditions also. Empirical correlations have also been proposed earlier by 
Bieniawski (1978) and Serafim and Pereira (1983) between modulus of deformation, Ed 
of the rock mass and RMR (Eqs. 5b and 5c). It is interesting to note the similarity 
between the proposed Ed versus RMR curves (Fig. 5) and Eq. 5c (Serafim and Pereira, 
1983). 
 

 
Fig. 5 - Correlation between RMR and modulus of deformation of rock mass 
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Ed = (2 RMR – 100)   GPa for RMR > 50  (5b) 
 

Ed = 10(RMR – 10) / 40    GPa    (5c) 

 
6.1.2 Effect of depth on modulus of deformation of rock mass 
 
The back analysis of the values of modulus of deformation also highlight its dependence 
on the height of overburden, H for which correction factor, f, was introduced in Eq. 5a. 
The correction factor,  
 

f = (Ed / 10 (RMR – 20 ) /  38)        (5d) 
 

has been plotted against the height of overburden, H in Fig. 6 from which the following 
correlation could be obtained: 
 
 f = 0.3 Hα        (5e) 
 
where  α = 0.16 to 0.3 and H > 50 m. Eq. 5a may, therefore, be written as: 
 
 Ed = 0.3 Hα

. 10
 (RMR – 20 ) /  38    GPa   (5f) 

 
where, H is in meters. According to Singh’s (1997) analysis of the same case histories, a 
better correlation for poor rocks is, 
 

Ed = H0.2 . Q0.36      GPa for Q < 10   (5g) 

 
Fig. 6 - Correction factor for effect of depth on modulus of deformation  

of rock mass 
 

Thus, poor rock masses exhibit pressure dependent modulus of deformation. The case 
histories which have been considered to arrive at Eq. 5f pertain to poor to good rock 
mass quality (RMR = 31 to 68). It is quite likely that for rock masses with RMR value 
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greater than 68 i.e. good to very good rock mass, the value of α is lower than 0.16 and 
for rock masses with a lesser RMR, i.e. less than 31 (i.e., very poor to poor rock mass), 
the value of α is greater than 0.3. This argument originates from growing evidence from 
laboratory experiments (Kulhawy, 1975; Santarelli and Brown, 1987; Brown et al., 
1989; Duncan Fama and Brown, 1989) which suggests that – a) the modulus of 
elasticity increases with confining pressure and has a relationship similar to Eqs. 5f and 
5b. This pressure dependency of modulus of elasticity, reflected in the value of α, is 
more pronounced in weaker rock materials and is almost absent in strong and brittle 
rock materials. Rock mass rating is some times unreliable in poor rock masses. 
However, rock mass quality is more reliable in poor rock masses and hence Eq. 5g may 
be used for estimating Ed. 
 
6.2 Squeezing Ground Condition 
 
Several authors have presented elasto-plastic analysis of tunnels (using either elastic-
perfectly plastic, elastic-brittle plastic or elastic-strain softening stress-strain models) to 
obtain solutions for stresses and displacements. In the present study, a semi-empirical 
approach based on Daemen’s (1975) analysis has been proposed.  
 
6.2.1 Equations for support pressure 
 
Daemen (1975) proposed the following equation for short-term support pressure in 
circular tunnels having radius, r = a under squeezing ground condition, namely, 
 

pi = [ pb + cr . cot φr ]. Mφ - cr. cot φr  ±  γ. (b-a). Mr   (6a) 
pb = 0.5 (σre + σθe) . (1 - sinφp) – cp.cos φp    (6b) 
 

in which σre and σθe are the radial and tangential stresses on the elastic side of elasto-
plastic interface (r = b), cp and φp , the peak and cr and φr, the residual strength 
parameters in  elastic and broken plastic zones respectively, pb , the radial pressure at r = 
b and γ, the unit weight of rock mass. Equation 6b ignores the effect of intermediate 
principal stress along the tunnel axis. 
 
 Mφ   =   (a/b)α        (6c) 
where 
 α =  2. [Sin φr/(1-sin φr)]       (6d) 
and 
 Mr   =  [a/(b-a)] . [(1-sin φr)/(1-3.sin φr)][(a/b)α-1-1]   (6e) 
  
Daemen (1975) substituted 2po for the term (σre + σθe) for the case of hydrostatic in-situ 
stress field, where po is the in-situ hydrostatic stress. The positive and negative signs 
pertain to support pressures in the roof and floor portions respectively. 
 
6.2.2 Equations for tunnel closure 
 
Daemen (1975) assumed the rock mass to dilate at failure and allowed for following 
three variations in the volumetric expansion: 
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(i)  Constant volume expansion throughout the broken zone, 
(ii) Volume change due to elastic relaxation of the broken zone with the axial stress 

calculated from an elastic plane strain assumption and 
(iii) Volume change due to elastic relaxation of the broken zone with the axial stress 

calculated from a plastic plane strain assumption. 
 
Daemen (1975) suggested Labasse’s solution (1949) for the first condition and derived 
expressions for the other two conditions. The final expressions for radial tunnel closure 
(or tunnel wall displacement), ua, for the above three conditions are respectively given 
by Eqs. 7a, 7b and 7c. 
 
For condition (i) above, 
 

ua = a – [a2 (1+e) – b2e-2b.ub+ 2
bu .]1/2      (7a) 

 
For condition (ii) above and for sin φr =  1/3, 
 

ua  =  (b/a). ub + 
dE .a

)( )( ν2−1ν+1
 [po (b

2- a2) – pi {(b
3- a3) / a} 

         - 3cr cos φr b
2 {( b / a ) -1} + γ {(b3 - a3) / 3 - b3 log (b / a)}]  (7b) 

 
Similarly, expressions have been given by Daemen (1975) for the conditions when sin 
φr  = 0, sin φr  ≠  0  and  sin φr  ≠  1/3. 
 
For condition (iii) above and for sin φr   =  1/3, 
 

ua  =  (b/a)ub + −
−ν2−1 22

d

o

E.a

)ab)((p

d

rr

E.a

)ab(cos.c.
2

−φ3
 . 

[(1-2ν) b2 + 
dE.a

]
)aabb( 9

ν+ν2−1
−

9
++ν 22

[pi {(b
3-a3)/a} 

m  γ {(b3-a3)/3 – b3 log (b/a)}]     (7c) 
 
Similarly, expressions have been given by Daemen (1975) for the conditions when sin 
φr = 0 sin φr  ≠  0, sin φr  ≠  1/3. In the above equations,  
 
e  =  coefficient of volumetric expansion for failed rock mass which is defined as the 

ratio of increase in volume of failed rock mass to its original volume, 
ub = radial displacement of elastic-plastic boundary (r = b), 
 = {(1+ν)/Ed} po [po . sin φp + Cp.cos φp]     (7d) 
Ed = modulus of deformation of rock mass, 
pb = radial stress at the elastic-plastic boundary (r = b) and 
ν = Poisson’s  ratio of rock mass. 
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Average values of ‘e’ are given in Table 3 on the basis of back analysis of tunnel 
closure in squeezing ground conditions. 
 

Table 3 - Observed values of coefficient of volumetric expansion (e) of Rock Mass 
after failure (Jethwa, 1981) 

 
                    Type of Rock Mass Coefficient of Volumetric 

Expansion,   e 
Phyllites 
Clay stones/silt stones 
Black clays 
Crushed sandstone 
Crushed shaled 
Crushed metabasics 

                  0.03 
                  0.01 
                  0.01 
                  0.004 
                  0.005 
                  0.006 

 

6.2.3 Determination of input parameters for Daemen’s  equations 
 
The ground reaction curve may be obtained from Daemen’s (1975) approach by 
calculating the values of support pressure, pi, and radial tunnel closure, ua, for different 
values of b/a ratio, using the equations given above (Eqs. 7a, b, c, d) These equations, 
however, contain several input parameters, some of which are difficult to estimate. In 
particular, the modulus of deformation, the peak and residual values of both cohesion 
and angle of internal friction of rock mass are required to be determined from expensive 
and time-consuming field tests. While a correlation has already been proposed for 
determination of modulus of deformation of the rock mass (Eq. 5c), a semi-empirical 
relationship will now the proposed for prediction of the rock mass cohesion. 
 
(a)  Proposed semi-empirical correlation for peak cohesion of rock mass 
 
Daemen (1975) used following constitutive equation for unbroken rock mass at the 
periphery of the broken zone: 
 
  σθe (1 – sin φp)  =  σre (1 + sin φp) + 2cp cos φp     (8) 
 

Therefore,  σre              =  
K

qp mass co

+1
−2

      (8a) 

 
where,  qcmass = uniaxial compressive strength of rock mass in elastic zone 
          =         [2cp cos φp / (1 – sin φp)]      (8b) 
 

and      K =        [ ]
p

p

sin

sin

φ−1
φ+1

       (8c) 

 
For squeezing to begin (or the rock mass to fail), σre should be greater than zero. 
Therefore, at the instant when squeezing starts, σre  = 0 or from Eq. 8,   
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P = 0.5 qcmass         (9a) 
 

From the empirical correlations (Eqs. 3b and 3c) for prediction of squeezing ground 
condition, it may be inferred that at the instant when squeezing begins, 
 

H   = 10

31

−
483

.
s

/

)BB(

Q.
       (9b) 

 
Multiplying both sides of Eq. 9b with γ and substituting γH with p for hydrostatic stress 
field, 

H   = 10

31

−
γ483

.
s

/

)BB(

Q...P
  =  

)sin(

cos.cq

p

ppcmass

φ−1
φ

=
2

   (9c)

  
 

The mobilised cohesion, cpm will therefore be  
 

cpm = 10

31

−
γ483

.
s

/

)BB(

Q..
 *  

cos

)sin(

p

p

φ
φ−1

  (t/m2)   (10) 

 
where, γ is the unit weight of rock mass in t/m3. Obviously, b = radius of the broken 
zone and φp may be obtained from block shear test or from RMR as suggested by 
Bieniawski’s (1979) classification. 
 
It may be recalled that the uniaxial compressive strength of rock core decreases with 
d0.18 where d is the diameter of core (Hoek and Brown, 1980). In field, d may be taken 
as average spacing of joints. Similar size effect is also observed in Eq. 10. 
 
(b)  Mobilised strength of rock mass around underground openings 
 
Figure 7 shows a comparison between mobilised cohesion, cpm and the cohesion cp, 
determined from Bieniawski’s  RMR, and from Mehrotra (1992), for a tunnel of 9m 
diameter. The cp values given by Bieniawski (1979) are based on the field test data from 
rock slopes compiled by Hoek and Bray (1977). Mehrotra (1992) obtained the shear 
strength parameters from block shear tests conducted on dry rock mass blocks in the 
lower Himalayan region. The cpm / cp ratio is plotted against RMR in Fig. 8. 
 
It is clear from Fig. 8 that there is definitely a need to account for a strength 
enhancement factor (= cpm / cp), which increases with increasing RMR. This strength 
mobilisation around the underground openings, known as an apparent strength 
enhancement, has been recorded by several investigators (Hobbs, 1966; Hoskins,1969; 
Daemen and Fairhurst ,1971; Santarelli and Brown 1987; Guenot, 1989 and Fuenkajorn 
and Daemen, 1992) during laboratory tests on thick-walled hollow cylinders. Daemen 
and Fairhurst (1971), for instance, found no indication of fracturing around the borehole 
when the external hydrostatic pressure applied to thick-walled hollow cylinders of 
Indiana limestone and concrete reached levels at which linear elastic analysis gave 
tangential stress at the borehole wall of at least four times the measured uni-axial 
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compressive strength of the material. Final collapse occurred at even higher pressure. 
Guenot (1987) presented a survey of results of such laboratory tests on hollow cylinders 
conducted by ten researchers on seven rock types. The ratio between the maximum 
(elastically) calculated compressive stress at which the failure occurs and the uni-axial 
compressive strength is typically about two. More recently, Fuenkajorn and Daemen 
(1992) obtained following empirical equation from biaxial borehole stability tests on 
cylindrical tuff samples: 
 

σθf  =  312.2 exp (2.05 σH2/σH1)   MPa     (11) 
 

 
Fig. 7 - Mobilized cohesion (Eq. 10) with respect to RMR in a tunnel of 9 m Span 

 

 

Fig. 8 - Recommended strength enhancement factor for cohesion parameter 
 from block shear test 
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where σH2/σH1 is the ratio of minimum and maximum applied boundary stresses and σθf, 
the tangential compressive stress at borehole wall immediately  before the fracture 
occurs. Fuenkajorn and Daemen (1992) however, acknowledged that Eq. 11 might 
overestimate the rock mass strength around large borehole due to the size effect and that 
the incorporation of this effect was not possible due to the lack of test data on large 
boreholes. Equation 11 further suggests that strength enhancement will be less in case of 
a general biaxial in-situ stress condition. 
 
The reason for apparent strength enhancement is that the shear strength behavior of 
jointed rock mass is highly anisotropic (Hoek and Brown, 1980). RMR classification 
gives lower limit of the strength parameter as obtained from failure of rock slopes. 
However, all round squeezing would not take place unless the tangential stress (2P) 
exceeds the maximum limit of the uni-axial compressive strength of rock mass. Hence, 
the mobilized cohesion (cpm) may represent the upper limit of cohesion of anisotropic 
rock mass. Moreover, uni-axial compressive strength statistically varies from one 
element of the same rock mass to another element depending upon the distribution of 
fractures. All round squeezing will not take place until tangential stress exceeds the 
upper statistical limit of the uni-axial compressive strength of rock mass. It may also be 
noted that the rock mass quality, Q is obtained from the visual inspection of the 
excavated face of tunnel which is likely to be poorer than the rock mass quality in the 
elastic zone. Further, joints in tunnels are of smaller length and tightly closed unlike 
those on slopes. 
 
Hudson (1993) suggested that the  apparent strength enhancement indicated in Fig. 8 
could be due to  the difference in the condition of shearing in  rock slopes (where full 
dilatancy is operative) and that for underground openings (no dilatancy). 
 
Another reason for apparent strength enhancement around underground openings 
appears to be the fact that failure stresses are calculated assuming the classical (constant 
modulus) linear elasticity, whereas the deformation modulus has been found to increase 
with increasing confining pressure (Eq. 5c). There is a growing evidence to suggest that 
linear elasticity approach can give misleading prediction of the onset and extent of 
fracture, particularly in softer rocks (Guenot, 1987; Kaiser et al. 1985; Maury 1987; 
Santarelli, 1987). Santarelli and Brown (1987) derived closed-from solution for stresses 
and strains around an axi-symmetric well bore assuming a confining pressure dependent 
modulus of elasticity and concluded that tangential stresses at or near the well bore wall 
could be much lower than those predicted from theory of elasticity and that maximum 
tangential stress which occurred some distance from the well bore wall are given by: 
 
(i)  Normalised tangential stress at elastic-plastic interface, 
 

σθe/po  =  K1(σre / po) – K2 (σre / po) α      (12a) 
 

(ii)  Normalised radial stress at elastic-plastic interface, 
 

σre/po  =  [(pi / po)
(1 - α ) -1} {b/a} (1 - α ) K

2 +1] (1 / 1 - α )    (12b) 
 

where,  K1      =   [ν(1- α)-1] / [(1-ν)(1-α)]      (12c) 
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 K2      =   [(2ν -1)(1- α)-1] / [(1-ν)(1-α)]     (12d) 
 
and α        =   constant of rock mass in Eq. 5e and 5f. 
 
Figure 9 shows the variation of tangential stress with radial stress for different values of 
α from which it is clear that stress concentration factor is much below the value of 2.0, 
which is obtained when modulus of elasticity (α = 0) is considered to be constant and 
that the maximum tangential stress occurs some distance away from the periphery. 

 
Fig. 9 - Variation of normalised tangential stress with the normalised radial stress for 

different values of Α (Santarelli and Brown, 1987) 
 
6.2.4 New theory of peak strength of rock mass 
 
Singh et al. (1998) have proposed a new criterion for peak strength of anistropic jointed 
rock masses, according to which, 
 

 σθ - σr   =   qcmass + A
)P( ro

2
σ−

      (13a) 

 
qcmass = qc [ Ed / Er ]

0.7       (13b) 
 

where, qcmass represents the average uni-axial compressive strength of rock mass; qc, the 
average uni-axial compressive strength of rock material; Ed, the modulus of deformation 
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of rock mass; Er, the modulus of elasticity of rock material and po is  the in-situ effective 
stress along the tunnel axis. Thus, the condition for squeezing is: 
 
 σθ  >  qcmass  +  (A.po/2)       (13c) 
 
Squeezing may therefore occur where A is small. Indeed squeezing has taken place 
where Jr/Ja < 1/2 which is a vital condition. The above strength criterion also explains 
enormous strength enhancement. Daemen’s equation (Eq. 6) may be rederived easily 
using new strength criterion and only differs in the expression of Pb as follows: 
 

 Pb = 
A.

Ap.q ocmassere

50+2
50−−σ+σ θ      (13d) 

 
6.2.5 Suggestions for plotting ground response curve 
 
The ground response curve for squeezing ground condition can now be plotted using 
Eq. 7 along with Eqs. 7a, 7b and 7c for tunnel closure and Eqs. 6a, 6b and 6c for support 
pressure. In equations 6a,b,c, the value of (σre + σθe) should be picked up from Fig. 9 
according to the actual value of α and the radial pressure at the inner boundary of the 
elastic zone. Further, peak cohesion parameter, cp in Eqs. 6a, 6b and 6c should be 
substituted by cpm (recommended) from Fig. 8 so as to account for the strength 
enhancement factor in the elastic zone. 
 
The peak angle of internal friction, φp may be taken from RMR classification system 
(Bieniawski, 1979). The residual cohesion, cr may be taken as about 0.1 MPa. However, 
the residual angle of internal friction, φr may be taken as equal to (φp – 10o) ≥  14o in the 
broken zone for (b/a) < 5. 
 
6.2.6 Rapid sympathetic failure in large broken zones 
 
Figure 10 shows the empirical ground response curve between observed support 
pressure (normalised with respect to short term support pressure of Barton et al. 1974) 
and observed tunnel closure (normalised with the tunnel diameter). It may be noted that 
there is an onset of a rapid sympathetic failure of rock mass within the broken zone 
when tunnel closure exceeds 6 % of the tunnel diameter. This observed phenomenon 
may be simulated by considering cr = 0 after deviatoric strain exceeds a critical limit (10 
% for weak rocks). The result would be a ground response curve as shown in Fig. 11 
which is similar to the empirical curve in shape. It is therefore suggested that tunnel 
closure should be controlled to within 4 % of the tunnel width as otherwise the support 
pressure may jump drastically. 
 
7. CONCLUSIONS 
 
The work presented in this paper draws its strength from field studies carried out at 63 
different sections of tunnels at various project sites in the Lower Himalaya and the 
peninsular India. These field studies involved instrumentation and monitoring of data 
related to tunnel closure, deep seated deformations in rock mass, contact pressures 
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between rock mass and steel sets and the loads in steel ribs, apart from other data related 
to geometry and rock mass classification. This data has been analyzed with the aim of 
proposing a practical approach for prediction of ground response curve for self 
supporting, non-squeezing and squeezing ground conditions.  
 

 

Fig. 10 - Empirical ground response curves 
 

 
Fig. 11 - Effect of sympathetic failure of rock mass on ground response curve 
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It may be concluded that – 
 
(i) Condition for squeezing depends upon in-situ stress magnitude along the tunnel 

axis as well as the depth of overburden (Eqs. 3 a-d). 
(ii)  Modulus of deformation of poor rock masses has been found to be pressure 

dependent (Eqs. 5a-f). 
(iii)  Support pressure in the squeezing ground is reduced drastically by in-situ stress 

along the tunnel axis because all rock wedges are pre-stressed by σ2 along the 
tunnel axis. 

(iv) Strength enhancement in jointed rock mass has been found to be significant (Eq. 
10). 

(v) Peak strength criterion for the anisotropic rock masses (Singh et al., 1998) is given 
by Eqs. 13 a and 13b which includes the effect of  σ2. 

(vi) Rapid sympathetic failure of rock mass within the broken zone occurs when tunnel 
closure exceeds 6 % of the tunnel diameter. So tunnel closure should be controlled 
within 4 % of tunnel size. 
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