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ABSTRACT 
 

The concept and methodology of a NO TENSION finite element analysis was 
proposed more than 30 years ago.  As per this methodology, the location and extent of 
the tension zones appear to be independent of the tensile strength properties of the 
medium.  Also, the available strategy does not follow the standard format of a 
nonlinear finite element analysis.  This paper proposes a finite tensile strength 
strategy, which overcomes both of the above limitations of the existing technology of 
NO TENSION analysis. At sufficiently high tensile strength, an elastic solution is 
obtained.  The stress or strain or both criteria control may be applied to specify the 
tensile strength properties of the medium. 
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1. INTRODUCTION 
 
The rock mass is sufficiently strong under compressive loads, however, its tensile 
strength is limited.  In addition, the rock mass contains numerous discontinuities like 
joints, fissures and micro cracks which open and start propagating whenever tension 
develops across these.  One of the major design criterion of the structures founded in 
or on the rock mass is to ensure that tension does not develop under the applied loads.  
A NO TENSION (NT) finite element analysis procedure to identify the location and 
extent of tension zones in a variety of structures was proposed by Zienkiewicz et al. 
(1968).  The boundary element method was used by Venturini (1983) to perform this 
kind of analysis.  Pande (1990) terms this kind of analysis as a time independent NO 
TENSION analysis and has listed its several drawbacks.  A major draw-back with this 
existing technology is that the location and extent of the tension zones appear to be 
independent of the tensile strength property of the medium as it does not constitute an 
input.  Also, the formulation of Zienkiewicz et al. (1968) is not in a standard format of 
nonlinear finite element analysis based on stress invariants as given by Owen and 
Hinton (1980). Therefore, its implementation is likely to be combersome. 
 
This paper is concerned with the nonlinear finite infinite element analysis of 
underground openings located in a medium of known tensile strength. An elasto-visco 
plastic ( EVP ) formulation of this criterion is given which is in the standard format for 
a ready implementation. Some problems of underground openings are analyzed with 
this formulation, which clearly demonstrate the influence of available tensile strength 
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of the medium on the location and extent of the tension zone.  It is found that for a 
sufficiently high tensile strength an elastic solution is obtained.   
 
 
2. RANKINE CRITERION 
 
The statement of this criterion is as follows (Chen, 1982), 
 
 σ1 – ft  = 0        (1) 
 
where σ1 is the major principal stress (in the tension positive sign convention) and ft is 
the tensile strength of the medium. Chen, 1982 has also described zoning of stress, 
which is used in this study. The criterion given in Eq. 1 is also mentioned by Pande 
(1990) but with ft = 0, where it is termed as time dependent no tension analysis. It 
appears that in-spite of ready availability of Rankine criterion, it has not been applied 
in the solution of real problems. 
 
2.1 EVP Formulation 
 
The criterion given in Eq. 1 may be expressed in terms of the alternative stress 
invarients proposed by Nayak and Zienkiewicz (1972) and by using the notation of 
Owen and Hinton, 1980, may be written as. 
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where,  
I1  =  First invariant of stress tensor, 
J2  =  Second invariant of the deviatoric stress tensor, 
θ = Lode angle,                                                            
YIELD  =  Computer name of yield function, and 
FDATM =  Computer name of yield strength. 
 
The derivative of yield function (Eq. 2) with respect to the stress vector which is 
needed in the computation of visco-plastic strains may be written as, 
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where J3 = Third invariant of the deviatoric stress tensor and the expressions for the 
coefficients a1, a2 and a3 are readily available in the published literature (Owen and 
Hinton, 1980 ). 
 
2.2 Treatment of Corners 
 
When the stress point lies at the corners, the direction of plastic flow vector becomes 
indeterminate.  The Rankine criterion possesses corners at θ = ± 30o.  The technique 
suggested by Owen and Hinton (1980) has been used to deal with this situation. The 
coefficients C2 and C3 in Eqs. 6 and 7 are modified as follows, 
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and  C3 = 0.0                 (10) 
  
2.3 Implementation 
 
The implemenation of this criterion in an existing nonlinear finite element analysis 
computer  program is straight forward and follows the procedure described by Owen 
and Hinton (1980). 
 
2.4 Strain Control of Tensile Strength 
 
It is known in the context of reinforced concrete that the tensile strength of materials 
may be stress controlled or strain controlled (Chen, 1982).  In the case of a stress 
control, a nonzero value of ft in Eq. 1 is assigned and the analysis is done as usual. For 
a strain control, the following procedure is applied. The total effective viscoplastic 
strain rate at the sampling points is computed as (Owen and Hinton, 1980), 
 

 nijij
n
vp t∆= ...
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where,  
∆tn  =  Current time step length, and 

ijε&  =  Visco-plastic strain-rate component. 

 
The strain control on the tensile strength properties of the medium can be applied by 
setting an appropriate value of ft  and by defining a threshold strain value εT so that 
when total effective VP strain rate is less than this value, it is set at zero. The setting of 
a non-zero but small value of εT also eliminates fictitious tensile locations created by 
round off errors during the iterative solution procedure. 
 
 
3. NUMERICAL MODELLING REFINEMENTS 
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The original work of NO TENSION analysis was done more than 30 years ago.  Since 
then, the FEM has been substantially refined.  The work presented in this paper 
incorporated the following refinements. 
 
• The constant strain triangular finite elements are replaced by higher order (eight 

node) iso-parametric finite elements, which can be numerically integrated to 
determine the stiffness properties.  It is known that these elements can efficiently 
model stress gradients. 

 
• The use of higher order elements offers another advantage in the analysis of 

underground excavations.  The loading, which is applied on the excavation 
surface to eliminate the radial and shear stresses, can be more accurately 
simulated.    

 
• The truncation approach is abandoned and the near and far fields of the problem 

are represented by the finite and infinite elements, respectively. 
 
• The infinite elements used in this study possess an inverse type far field decay 

which is widely used in such applications ( Kumar, 1985 and Bettess, 1992 ).  The 
uniform non-zero far field decay can be accounted for without having to create 
nodes at infinity (Kumar, 1999).  Similarly, the non-uniform nonzero far field 
decay is taken care of by loading the correct value of far field variable directly at 
the Gauss point. 

 
• These infinite elements are to be placed sufficiently far away from the opening so 

that the non-linear effects do not cross the finite infinite element interface.  It is 
also preferable to orient these infinite elements in a radial direction.  
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4. VERIFICATION OF FORMULATION & IMPLEMENTATION 
 
4.1 Problem Description 
 
The analytical derivation of the previous section and its implementation into an 
existing FEM analysis computer program are verified by solving the problem of a deep 
circular opening located in an isotropic medium. It is subjected to an internal pressure 
and hydrostatic initial stress field. The problem data is as follows, 
 
 Radius of opening = 200.0 cm 
 Modulus of elasticity = 34500.0 kg/cm2 
 Poisson ratio  = 0.2 
 
4.2 Analytical Solution 
 
The stress distribution around a deep circular opening is written as. 
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where,   
σr σθ =  Radial and tangential stress, 
q =  Strength of hydrostatic initial stress, 
pi  =  Internal pressure, 
a =  Radius of opening, and 
r =  Radial distance. 
 
The stress distribution given in Eq. 12 is independent of the medium properties.  In the 
present exercise, pi = 3 kg/cm2  and q = 1 kg/cm2 are taken.  These values are designed 
to induce tensile tangential stress adjacent to the opening. There is no other physical 
significance of these values. It can be shown that for r ≤ √ 2 a, the tangential stress is 
tensile.  It is necessary to note that the development of tensile stress is independent of 
the medium properties but the location and extent of no-tension zone should depend on 
it.  
 
 
 
4.3 Numerical Model 
 
The numerical model used in this study is shown in Fig. 1. This includes all the 
previously described refinements and contains 180 nodes.  The near and far fields are 
described by 48 finite and 6 infinite elements, respectively.  By virtue of the 
symmetry, only a quarter of the problem is analyzed in a plane strain formulation of 
the theory of elasticity. 
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4.4 Numerical Results 
 
It is shown in Table 1 that the first five Gauss points located closest to the horizontal 
axis have tensile elastic tangential stress.  In the no-tension analysis with εT = 0 and ft 
= 0, these locations are correctly identified.  The size of no-tension zone would be 
determined by the values of εT and ft.  This problem is very well defined with a simple 
close form solution. The no-tension analysis reached steady state in just four iterations. 
The distribution of tangential stress after the no-tension analysis is interesting.  The 
location of Gauss points with tensile stress has shifted and the magnitude of tensile 
stress has considerably reduced.  It was found that in this range, the ordering of 
principal stress is upset so that the axial stress is no longer the intermediate principal 
stress. This analysis was repeated with a small value of Poisson ratio.  It resulted in a 
smaller residual tensile stress and zone. 
 
 

Table 1 - Numerical results of a deep circular opening in a No-Tension medium 
 

Tangential Stress 
No Tension Analysis 

Element 
Number 

Gauss 
Point 

Number 

Radial 
Distance Elastic 

value ν = 0.2 ν = 0.1 Plastic strain 
1 205.54 0.895 -1.845 -1.706 0.7355*10-4 
4 224.90 0.571 -1.034 -0.969 0.4684*10-4 

1 

7 244.26 0.342 -0.520 -0.447 0.2808*10-4 
1 255.52 0.225 0.301 -0.192 0.6216*10-5 
4 274.88 0.053 0.246 0.166 0.2544*10-5 

7 

7 294.23 -0.076 0.188 0.148 0 
1 305.50 -0.144 0.102 0.017 0 
4 324.85 -0.245 -0.028 -0.0136 0 

13 

7 344.21 -0.326 -0.132 -0.12 0 
1 361.11 -0.385 -0.209 -0.20 0 
4 399.82 -0.503 -0.361 -0.35 0 

19 

7 438.53 -0.583 -0.464 -0.46 0 
1 461.06 -0.624 -0.515 -0.51 0 
4 499.78 -0.682 -0.590 -0.58 0 

25 

7 538.49 -0.724 -0.645 -0.64 0 
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5. APPLICATION EXAMPLE 
 
5.1 D-shaped Lined Tunnel 
 
Problem Description -  This problem was first solved by Zienkiewicz et al. (1968) and 
used FPS unit system.  The same unit system had to be employed in this study also.  
The various dimensions of the problem and medium properties are available in the 
published literature and are not repeated here.  Other than this very few details of the 
analysis are available. 
 
Numerical Model - The numerical model employed in this study is shown in Fig. 2.  
This contains 216 nodes, 48 finite elements to describe the medium, 10 finite elements 
to describe lining and 8 infinite elements to model the far field. While the lining finite 
elements and infinite elements behave elastically, the no-tension criterion is applied to 
the finite elements which describe the medium. 
 
Loading -The excavation surface is made free of the radial and shear stresses 
corresponding to the gravity load and horizontal stress ratio 0.2. 
 
Numerical Results  - The numerical results for εT = 10-5 and a variable ft are shown in 
Fig. 3.  It is interesting to see how the no-tension zone reduces as ft is increased from 
400 lb/ft2  (19.14 Kpa) to 1000 lb/ft2  (7.85 Kpa). Only one such result was reported by 
Zienkiewicz et al. (1968) and from the published results it could not be determined to 
which value of ft  it belongs. 
 
5.2 Deep Power House Cavern 
 
Problem Description  - The problem to be analyzed is described in Fig. 4. A very 
similar power house cavern was also analyzed by Zienkiewicz et al. (1968) and 
Venturini (1983) by FEM and BEM, respectively. 
 
Medium Properties   
 
 Modulus of Elasticity  = 0.141 E+07  t / m2 
 Poisson ratio   = 0.15 
 Unit weight of material = 2.5  t / m3 
 Initial stress ratio  = 0.2 
 
Numerical Model - The numerical model of this problem is shown in Fig. 5. It contains 
462 nodes, 130 finite elements and 24 infinite elements. In this problem, the free 
surface is assumed to be far away (in excess of 100 meters).  This problem does not 
possess any symmetry and it is analyzed in a plane strain formulation. 
 
Loading - A uniform initial stress loading is applied in which the vertical load 
corresponds to the weight of the overburden material between the free surface and 
center of the opening. These initial stresses are converted to loads on the excavation 
surface so as to eliminate the radial and shear stresses. A comparison of gravity load 
with a uniform load at the opening center shows that the uniform load is more on the 
top of the opening and less at the bottom by virtue of the averaging. 
 
 Intensity of vertical initial stress = 280 t/m2 
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 Intensity of horizontal initial stress = 56   t/m2 
 
Numerical Results - The location and extent of tension zones are shown in Figs. 6a and 
b for tensile strength of 15 t/m2 and 25 t/m2, respectively.  
 
5.3 Discussion 
 
Two solutions presented in this section compare very well with the published results at 
least in the location of the no-tension zones and their form. In addition, these solutions 
are more informative in that each one corresponds to a medium of a particular tensile 
strength. This can not be derived from the published results. A more quantitative 
comparison is not possible because all details of the published results are not available.   
 
 
6. CONCLUDING REMARKS 
 
The development of tensile stress in an isotropic medium may be independent of the 
tensile strength properties of the medium but the extent and location should depend on 
it. This paper gives a formulation and computation procedure so that the extent and 
location of no-tension zones may be linked with the tensile strength characteristics of 
the medium. Such characteristics may be stress or strain controlled. The correctness 
and effectiveness of this formulation is established in this paper through solution of 
three problems.  The numerical models employed in this study are substantially refined 
in view of the recent developments in the FEM analysis. 
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Fig. 3 No-Tension solutions of D-shaped lined tunnel (a) ft = 400 Lb/ft2 (19.14 Kpa), (b) 
ft = 600 Lb/ft2 (28.71 Kpa), (c) ft = 800 Lb/ft2  (38.28 Kpa), and (d) ft = 1000 
Lb/ft2 (47.85 Kpa) 

(a) For Tensile Strength = 19.14 KPa

  Opening Surface

  No Tension Zone

 free surface

(b) For Tensile Strength = 28.71 KPa

  Opening Surface

  No Tension Zone

free surface

(c) For Tensile Strength = 38.28 KPa

  Opening Surface

  No Tension Zone

free surface

(d) For Tensile Strength = 47.85 KPa

  Opening Surface

  No Tension Zone

free surface
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 Fig. 6 - No Tension zones around the underground power house cavern  

 (a) Tensile strength ft = 15 t/m2, (b) ft = 25 t/m2       
 

(a)

  Opening Surface   No Tension Zone

(b)

  Opening Surface   No Tension Zone


